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ABSTRACT 

 
 This study compare in- and out-of-sample performance of univariate 

autoregresive nonparametric and GARCH-classified models for conditional variances, 

using weekly Baht/U.S. rate of return in 1999-2005. Nonparametric model consider a 

class of dynamic process in which both the conditional mean and conditional variance 

(volatility) are unknown functions of the past. Nonparametric estimation deployed local 

linear estimator and optimal cross-validation bandwidth. GARCH-classified models of 

which parameterized by constrained maximum likelihood estimation are composed of 

ARCH, GARCH, TGARCH, EGARCH, I-GARCH, and ARCH-M. For in-sample 

estimation, there is inclusive evidence to justified the outperformance between 

nonparametric and parametric approaches. However, predictive efficiency measured by 

rolling MSPE can find grounds for choosing nonparametric model. An asymmetric U-

shaped "smilng face" form of the nonparametric volatility function is found.     
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CHAPTER 1  

INTRODUCTION 
 

1.1 Statement of Problem 

 

Volatility is one of the basic identities of many economic time series because of 

the fluctuation of fundamental, psychological and behavioral factors. The common 

stylized- facts related to the properties of economic time series data reveal the variation 

of  conditional mean and conditional variance and most exhibit phases of relative 

tranquility followed by periods of high volatility. So in applied study, the basic 

assumption of conditional homoskedasticity is inappropriate because the random 

disturbances for different times should have diverse variances.1  

 

 In time series regressions, the explanatory variable itself exhibit dynamic 

behaviors and such specification imply a dynamic structure for the conditional variances. 

The variation volatility of a time-series process relates to the dynamic pattern of such a 

process. Engle (1982) modeled the heteroskedasticity by relating the conditional variance 

of the disturbance term to the linear combination of the squared disturbances in the recent 

past. This specification is called a simple autoregressive conditional heteroskedasticity 

(ARCH) because the variance, conditional on prior information, is in an autoregressive 

form of lagged squared disturbances. This model has been generalized by Bollerslev 

(1986) with the conditional variance depends on its lagged values as well as squared 

lagged values of disturbance, which is called generalized autoregressive conditional 

heteroskedasticity (GARCH) . Because the economic of uncertainty being recognize the 

importance of econometric approach to estimate the variance of a series, ARCH and 
                                                 
 1 Piyassphan (2003) found that Thailand exchange rate’s conditional variance is not constant 

over time, such as Khanthavit (n.d.) and Phrukpaisal (2003) for Thailand stock market return empirical on 

variation volatility.   Vimolsiri (1995), Khantavit (2001), and Chusil (2003) can distinguished the market 

regimes of both stock return’s conditional means and conditional variances in two and three states. 

1 
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GARCH models have being extended and implemented in many forms and in various 

applications. 

 

 The volatility of these models depends parametrically on lagged values of the 

process and lagged values of volatility. One of the standard approaches of fitting these 

models to data involves nonlinear maximum likelihood estimations (MLE). But these 

models are sensitive to model misspecification about the features of variables and 

functional relations among them. 

 

 Now the central issues on the stochastic dependency, between regressor and 

regressand in regression, are the determination of the function. In particular areas of 

econometrics in any economics applications, a variety of ad hoc transformations have 

been exploited. The interest in this question of estimating an unknown functional form 

extends out of range of just estimating a conditional mean to higher order moments. 

Because there has always been a residual doubt that the functional form might be more 

complicate than the set of feasible form allowed for and that the approximation is 

seriously deficient. In practice, if the functional form is failed to be specify, estimation 

results based on an incorrect specified parametric model can give the misleading 

conclusion and thus the misdirect policy. 

 

 Nonparametric econometrics is one of the solutions in corrective estimation 

because of the flexibility in unrestricted functional form. The conditional variance, or 

both conditional mean and conditional variance, could be modeled in a generalized 

nonparametric regression. The Rosenblatt-Parzen kernel estimator is the well known 

estimator and has been developed for many years. This approach could explore the 

unknown functional form in regression function. 

 

 This study will focus on several, nonparametric and parametric, conditional 

volatility models comparison in out-of-sample forecasting performance using Thailand 
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exchange rate for U.S. Dollar. The focusing issue is the volatility estimation ability in 

term of econometric contribution. 

 

1.2 Objective of the Study  

 

 The study is aimed to analyze the econometrics estimation approaches when the 

univariate time-series is employed for forecasting purposes.  

 1. To study the differentiation of parametric and nonparametric estimation on 

exchange rate conditional volatility. 

 2. To compare predictability performance among different approached 

competitive models. 

 

1.3 Scope of the Study  

 

 This study will compare the nonparametric and parametric models prediction’s 

performance for the return and volatility of weekly Baht/U.S.$ rate of return in 1999-

2005. This study will use rolling mean squared prediction error (rolling MSPE) as the 

measure of the predictive ability. 

    

1.4 Organization of the Study  

 

 Next chapter will be an expository introduction to some of the basic methods of 

nonparametric regression. Then, after the illustrated results on Baht/U.S. currency 

review, the next chapter will also retrospectively survey the studies on the development 

of related topics of econometrics. Studies of conditional heteroskedasticity will be 

reviewed compactly before studies on nonparametric volatility function and literatures on 

model comparison. Chapter four will present the theoretical framework and methodology 

used in the study. Chapter five will discuss the empirical results and, finally, chapter six 

concludes. 



CHAPTER 2 

INTRODUCTORY NONPARAMETRIC ECONOMETRICS 
 

2.1 General Concept of Nonparametric Econometrics 

 

 Parametric method is statistically simple and if the assumptions of a parametric 

model are justified, the regression function can be estimated more efficiently than it can 

be done by a nonparametric method. But many assumptions are made in coming up with 

the questions about the functional relations and the distributional features of variables.  

 

 In contrast, nonparametric approach is desirable because the minimum of 

structure imposed on the regression function. It is only necessary that regression function 

possess some degree of smoothness in order for nonparametric methods to yield 

reasonable estimates of this function. Typically, continuity of function is enough to 

ensure the convergence of estimator to the true as the size of data increases. Additional 

smoothness, such as the existence of derivatives, allows more asymptotic efficient 

estimation.   

 

 Nonparametric estimation can improve an approximation by capture a wide 

variety of nonlinearity without restrict any particular specification of the nonlinear 

relation. Nonparametric estimation of , the unknown functional form of conditional 

mean for any regression function, is employed by the method of density estimation. The 

Nadaraya-Watson estimator, one of the well-known estimation approach, is a kind of 

smoothing estimators because the observational errors are reduced by averaging the data.   

( )m x

 

 Let ( )t t ty m x u 1,...,T= +    t =  where  is an arbitrary fixed but unknown 

function of conditional mean, i.e. 

(.)m

( ) ( | )m x E Y X x= =  where x  is some fixed value 

of X ,   is a zero mean and finite constant variance  process. 1{ }T
t tu = . . .i i d

4 
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 The basic idea of estimation is to local averaging all ty ’s  whose tx ’s are “close” 

to the point x  at which we want to estimate curve. This is called kernel estimator which 

use “weighted” average of ty ’s  whose tx ’s are close to x . That is by put more weight 

on ty ’s  whose tx ’s are close to x .  

 

 In other words, there’s a small neighborhood around 0x  which  will be 

nearly constant and could be estimated by taking the average of the 

0( )m x

ty ’s that correspond 

to those tx ’s near 0x . So the closer of tx ’s are to the value 0x , the closer an average of 

corresponding ty ’s to .  0( )m x

 

 A feature of Nadaraya-Watson estimator is being a weighted sum at those ty ’s 

that corresponding to tx ’s in a neighborhood of x . For an arbitrary x , a smoothing 

estimator of :  where ( )m x
1

ˆ ( ) ( )T
tt

m x w x y
=

=∑ t 1{ ( )}T
t tw x =  are weights which are high  for 

ty ’s paired with tx ’s that are closer to x . To ensure the consistency of  it is 

necessary that  . This condition is guaranteed for each 

ˆ ( )m x

1
( ) 1T

tt
w x

=
=∑ x  by the way in 

which Nadaraya-Watson estimator is constructed. Campbell et al. (1997) illustrate the 

simulation figures that if one chooses too large a neighborhood around x  to compute the 

average, the weighted average will be too smooth and cannot capture the nonlinearity of 

.  On the other hands, too small neighborhood around (.)m x , the weighted average will 

be too vary, reflecting noise as well as variations in . We have a set of illustrated 

examples shown in figure 2.1 (a) to (c). The choices in different bandwidths are shown 

that the weights { } need to be optimized balancing on the trade-off between 

unbiasedness and variation in estimation 

(.)m

( )tw x

. 
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Figure 2.1 

Different bandwidths of 0.04, 0.35 and 1 for NW estimators 

(a) 

 
(b) 

 
(c) 
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 The weighted average process in the given bandwidth is shows in Figure 2.2, the 

idea behind this process is to use information in the small neighborhood around point x  

for the corresponding estimation. Only the data in this small bandwidth matters for 

estimate function at the given point of explanatory variable. And the observations near 

this given point will be weighted more than the farther ones in estimation procedure. 

Figure 2.2 (a) shows that the estimated constant curve that is derived from weighted 

average all the observations in the bandwidth and give the corresponding estimator: 

 in figure 2.2 (b). Then this data driven process move bandwidth 

along the smoothing estimation to new supposed 

1
ˆ ( ) ( )T

tt
m x w x y

=
=∑ t

x  as in figure 2.2 (c) and have the 

corresponding estimator at this given new point. The different estimators of any given 

sets of point x  are the nonparametric regression function, as some part of curve is show 

the connected line between estimators as in figure 2.2 (d).  

 

Figure 2.2 

Data Driven Estimator (Local Constant) 

    (a)    (b) 

 
    (c)    (d) 
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2.2 Kernel Estimator and Asymptotic Properties 

 

 As previous describe that, kernel regression is an important smoothing technique 

for estimates . From definition of cumulative distribution function (cdf) and 

indicator function, we can also estimate pdf 

(.)m

( )f x . If ( )f x  is smooth in a small 

neighborhood [ , ]x h x h− +  of x , we can justify the following approximation, 

   2 ( ,   (2.1) ) ( ) ( [ , ])
x h

x h

hf x f z dz P X x h x h
+

−

= = ∈ −∫ +

by the mean value theorem where h  is called the smoothing parameter (or bandwidth).  

 

 The right-hand side of (2.1) can be approximated by counting the number of tx ’s 

in this small interval of length 2 , and then dividing by . This is a histogram estimator 

with bincenter 

h T

x  and binwidth 2 . For h ( )tX xz
h
−

= , let [ 1,1]
1 1( ) ( ) (| | 1)
2 2

K z I z I z−= = ≤ , 

where (.)I  is the indicator function taking the value 1 when the event is true and zero 

otherwise ,and (.)K  is called the kernel function.  

 

Therefore   1( )
2

K z =   if [ 1,1]z∈ −     (2.2) 

            = 0  otherwise 

So   1( )
2

tX xK
h
−

=  if [ , ]tX x h x h∈ − +    (2.3) 

            = 0  otherwise 

Then    
1

( )T t
t

X xK
h=

−∑ = number of  [ , ]
2
tX x h x h∈ − +   (2.4) 

From      = ( [ , ]P X x h x h∈ − + ) number of  [ , ]tX x h x h
T
∈ − +  (2.5) 

      = 
1

2 (T t
t

)X xK
h

T
=

−∑
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Then the histogram estimator can be written as  

   
1

( )
ˆ ( )

T t
t

X xK
hf x

Th
=

−

=
∑

      (2.6) 

 

 In most cases, kernel function is a probability density function which is a 

piecewise continuous function, unimodal, integrating to one, symmetric about zero, and 

has first two moments finite. Some kind of kernel weights each observations inside the 

window equally as the above mathematical derived kernel is the example. However, 

observations closer to x  should possess better information than more distant ones as 

some another kinds of kernel. As some kinds of kernels have more weights for closer 

observations such as Gaussian kernel for example. 

 

The examples of the kernel functions are 

Uniform kernel: [ ]1,1
1( ) ( )
2

K z I z−=       (2.7) 

Standard normal kernel: 
21

21( ) ;
2

z
K z e z

π
−

= −∞ < < ∞    (2.8) 

Epanechnikov kernel: [ ]
2

1,1
3( ) (1 ) ( )
4

K z z I z−= −     (2.9) 

Quartic kernel: [ ]
2 2

1,1
15( ) (1 ) ( )
16

K z z I −= − z       (2.10) 

where [ ]1,1I −  is an indicator function with support [ ]1,1− . 

 

 In addition, kernel can be considered as rolling windows to estimate curve at each 

sample point. This rolling kernel should move along the horizontal axis to estimate the 

curve at given point tx ’s. The curve of quartic kernel recognizes the unequally weighted 

local average of corresponding ty ’s in estimation procedure.    
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 From usual literatures on nonparametric function estimation1, one can show that 

if 1,..., Tx x  be  observations with pdf . . .i i d ( )f x  which are twice continuously 

differentiable, also the  order derivatives of ths ( )f x , , are bounded 

functions. And the kernel function 

( ) ( ); 0,1, 2sf x s =

(.)K satisfies 

(i) ( ) 1K z dz =∫  (ii) ( ) 0zK z dz =∫  (iii) 2
2( ) 0z K z dz k= >∫   

If as  and Th , where  T →∞ ,h → 0 →∞

1
1

ˆ ( ) ( ) ( )T t
t

X xf x Th K
h

−
=

−
= ∑ ,    (2.11) 

then ˆ ( ) ( )f x f x→ in MSE. 

 

 For the general nonparametric regression model ( ); ,1 ,2 ,( , ,..., ) p
t t t t pX X X X= ฮ ก

( )t t ty m x u= + ( | )t t tE y x u= +       (2.12) 

Given the definition of conditional expectation, 

  ( , )( | ) ( | )
( )X

f x yE Y X x y f y x dy y dy
f x

= = =∫ ∫     (2.13) 

The estimator for  is ( , )y f x y dy∫ ˆ ( , )y f x y dy∫ ,  

where 1 1
1

ˆ ( , ) ( ) ( ) ( )Tp t t
t

X x Y yf x y Th K K
h h

+ −
=

− −
= ∑       

with  ,,1 1 ,

1

( ) ( ) ( ) (
p

t p pt tt

l

X x
)l lX x XX xK k k k

h h h h=

x−− −−
= =∏L ;  

where ,( t l lX x
k

h
−

) is a univariate kernel for  variable ;   thl 1,...,l p=

So       1 1
1

ˆ ( , ) ( ) ( ) ( )Tp t t
t

X x Y yyf x y dy Th K yK dy
h h

+ −
=

− −
= ∑∫ ∫    (2.14) 

  1 1
1

( ) ( ) ( ) ( )Tp t
tt

X xTh K Y hz K z hdz
h

+ −
=

−
= −∑ ∫ ;  tY y hz− =

                                                 
 1 as in Hart (1997), Pagan and Ullah (1999), and Li (2000), 
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  1 1 2
1

( ) ( ) ( ) ( )Tp t
tt

X xTh K Y K z hdz h zK z dz
h

+ −
=

− ⎡ ⎤= −⎣ ⎦∑ ∫ ∫  

  1
1

( ) ( )Tp t
t tt

X xTh K Y
h

−
=

−
= ∑  ; ( ) 1K z dz =∫   and ( ) 0zK z dz =∫  

Thus we will estimate ( | ) ( )E Y X x m x= =  by 

1
1

1
1

( ) ( )
ˆ ˆ( | ) ( )

( ) ( )

Tp t
tt

Tp t
t

X xTh K Y
hE Y X x m x X xTh K
h

−
=

−
=

−

= = =
−

∑

∑
    (2.15) 

The proof of is very similar to the proof of ˆ ( ) ( )
p

m x m x→ ˆ ( ) ( )
p

f x f x→ .  

 

 For particular exposition below extended from previous theoretical instance 

should exhibit more intuition about the nonparametric kernel estimator, consider an 

example for  with uniform kernel. tX ฮ ก

Then     
1 | |

| |
1

( )
ˆ ( )

1( )

t

t

T t
tt tX x h

T t X x h
t

X xK Y Yhm x X xK
h

= − ≤

− ≤
=

−

= =
−

∑ ∑
∑∑

| |

| |

[ ( ) ]

1
t

t

t tX x h

X x h

m x u
− ≤

− ≤

+
=
∑

∑
  (2.16) 

   = {average of s + average of  ; |( )tm x tu |tX x h− ≤ } 

   = {conditional mean ; | |tX x h− ≤ } +  

{conditional stochastic disturbance ; | |tX x h− ≤ } 

   ( ) 0 ( )
p

m x m x→ + =

because | (  as  for |) ( ) | ( ) (1)t p pm X m x O h o− = = 0h→ |tX x h− ≤   

and average of by law of large number since T  and . tu 0
p

→ →∞ ( ) 0E u =

 

 In general, since  use local average of Y ’s whose ˆ ( )m x tX  is close to x  to 

estimate , hence  is also called local constant estimator of . This 

Nadaraya-Watson estimator satisfies the weighted least square criterion: 

( )m x ˆ ( )m x ( )m x
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2
1

{ }
ˆ ( ) arg min { } ( )T t

tt
m

X xm x Y m K
h=

−
= −∑     (2.17) 

 

2.3 Local Constant and Local Linear Estimators 

 

 This subsection will introduce the fundamental concept of local constant and local 

linear (or in general called local polynomial) estimator. The shared common idea of both 

estimators is to smoothed estimating the unknown form of regression function by remove 

data variability that has no assignable cause and makes systematic identities of data be 

apparent. In particular, while local constant estimator weighted averages for constant 

curve, local linear estimator provides estimator for the unknown curve and its derivative. 

This part will be focus on local linear estimator. The intuition and theoretical aspect are 

presented. Matrix notation for the view of GLS estimation also provided. 

    

Local Constant Estimator 

 Local constant estimator is the one of nonparametric method for estimating the 

regression function. The local averaging method by weighted averages the data in the 

given interval bandwidth is the idea of estimating the continuous function. The average is 

the estimate of the regression function value from moving the window interval along the 

set of explanatory variable’s data to compute the estimate at any point. The closer 

observations will be systematic weighted more to the computation process, the 

summation of weights equals to one. 

 

 As priori pointed out in previous subsection that the Nadaraya-Watson estimator 

of  minimizes  ( )m x

2
1
{ } (T t

tt
)X xY m K

h=

−
−∑        (2.18) 

and the solution of  is  m
1

1 1
ˆ ( ) ( )T T

tt t
m x K K Y−

= =
= ∑ ∑ t t        (2.19) 
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, the weighted average of ty  values, where ( )t
t

X xK K
h
−

= .  

 

 Thus,  is the least squared estimator of the parameter in the weighted 

regression of 

ˆ ( )m x

ty  on unity with weight equal to
1
2

tK . 

 

 In matrix notation, this problem is equivalent to     (2.20) '

{ }
min( ) ( )

m
Y mi Y mi− Ω −

where   , the  vector of 1, and  (1...1) 'i = 1T ด [ ( )]tX xdiag K
h
−

Ω = . 

Then   1 1
1 1

ˆ ( ' ) ' ( )T T
tt t

m i i i y K K Y− −
= =

= Ω Ω ≡ t t∑ ∑ .    (2.21) 

 

Local Linear Estimator 

 Local linear method will estimate any twice continuous differentiable regression 

function. This regression function is approximately linear in an interval of given 

observations of independent variable. The advantage of using a local linear estimator that 

have degree of polynomial more than zero (local constant estimator) is to reduce the 

estimation bias. The estimator at any given data is the intercept of its linear estimator. 

 

 To obtain local linear estimator, we estimate any sufficiently smoothed function 

by fitting straight lines locally to the data. Thus, local linear (or local polynomial, in 

general) estimator of  is the solution of the following minimization problem: ( )m x

2
1

{ }
ˆ ( ) arg min { ( ) ' } ( )T t

t tt
m

X xm x Y m X x K
h

β
=

−
= − − −∑   (2.22) 

We call  the local linear estimator of . And slope estimator, ˆ ( )m x ( )m x ˆ( )xβ , can be used 

to estimate the derivative of . This estimate can be found by performing a weighted 

least squares regression of 

( )m x

ty  against (1 ( ')tX x− ) with weights 
1
2

tK . Thus, whereas the 

Nadaraya-Watson estimator fits a constant to the data close to x , the local linear 
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approximation fits a straight line. Figure 2.3 give the differences from figure 2.2 in data-

driven estimated curve in any given bandwidths. We can see that the least square 

estimators in the given bandwidths are linear function with slope. The corresponding 

estimators that occupy on the different estimated local linear in any bandwidths are 

connected at the corresponding of any explanatory variable points to be the regression 

function estimator.  

 

Figure 2.3 

Data Driven Estimator (Local Linear) 

    (a)    (b) 

 
(c)    (d) 

 
 

 Let   and m̂ β̂  be the solutions for this local linear weighted least squared 

minimization problem. One can show that   and ˆ ( )m x ˆ( )xβ  are consistent estimators for 

 and( )m x ( ) ( ) /x m x xβ = ∂ ∂ , respectively. For matrix notation, denotes  

( )xδ δ= =  ( .       (2.24) ( ), ( ) ') 'm x xβ

 

 Let χ  be an  matrix with  row being (1 )T ด + p tht (1 ( ) ')tX x− , i.e., 
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   χ  =  
1,1 1 1,

,1 1 ,

1 ...

1 .

p p

T T p p

X x X x

X x X x

⎛ ⎞− −
⎜ ⎟
⎜
⎜ ⎟− −⎝ ⎠

M M O M ⎟      (2.25) 

and let  be an T  diagonal matrix with  diagonal element being  Ω Tด tht

  ,

1

( ) (
p

t l lt

l

)
X xX xK k

h h=

−−
=∏       (2.26) 

Thus, local linear estimator’s minimization problem can be written as  

  '

{ , }
min( ) ( )

β
δ δχ χ− Ω −

m
Y Y       (2.27) 

which is the standard GLS problem with ˆ ˆ(m ˆ ') 'δ β=  be the solution:  

1ˆ( ) ( ' ) 'δ χ χ χ−= Ω Ωx y       (2.28) 

        ( ) 1
1 1

1 1
( ( ) 1 ( ) ' ) ( )T Tt t

t tt t
t t

X x X xK X x K Y
X x Xh h

−
= =

⎛ ⎞ ⎛ ⎞− −
≡ −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∑ ∑ x

.

 

 

 Given assumptions 

(i)  1{ , } ~ . .T
t t tX Y i i d=

p
tX ฮ ก; .  Both tX  and ( ) 't t tu Y m X x β= − − −  have finite fourth 

moment 

(ii)  is twice differentiable, and its second order derivative is bounded. ( )m x

2 2( ) ( | )σ = =x E u X x  is continuous in x  

and (iii) K  is a second order kernel, as T , , and . Also assumes 

that 

→∞ 0h→ 2pTh + → ∞

K  is a compact supported bounded function, such that K >0 on a set of positive 

Lebesgue measure,  

then one can show that ˆ( ) ( )
p

x xδ δ→ .       (2.29) 
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2.4 Cross-Validation and Plug-In Bandwidth 

 

 The choice of kernel is not crucial, that is there are a number of ways to eliminate 

the asymptotic problem; e.g. use the higher order (in bounded derivatives) kernel. The 

nearly critical is the choice of bandwidth. Generally, the bias of kernel estimator becomes 

smaller in magnitude as the bandwidth is made smaller. Unfortunately, decreasing the 

bandwidth also has the effect of increasing the estimator’s variance. So there are 

principles to find a bandwidth that afford a satisfactory compromise. Theoretically, one 

can show that if  and second order kernel is used,  and 

, where  and  are some constants. 

p
tX ฮ ก 2

1
ˆ( ( ))bias f x c h=

1
2

ˆ( ( )) ( )pvar f x c Th −= 1c 2c

 

Plug-in Rules 

 

 From asymptotic property theorem of ˆ ( )f x , the estimator of pdf ( )f x  minimize 

ˆ( ( ))MSE f x . The optimal choice of h , bandwidth or smoothing parameter, should 

minimize the MSE , so  

   4 1
1 2arg min arg min[ ( ) ]p

h h
h MSE c h c Th −= = +    (2.30) 

F.O.C.       =>  3
1 24 ( )pc h c Th −− =1 0

1
4 ph cT

−
+=    (2.31) 

  

 Plug-in Rules exploit an asymptotic approximation to mean average (mean 

integrated) squared error. But in practice we don’t know the constant , so the sample 

standard deviation might be used for.  

c

 

Cross-Validation 

 

 The basic idea of cross-validation is that to build a model from one part of the 

data and then use that model to predict the rest of data. For a given model, one may 
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compute an average prediction error over all the data points predicted. The model that 

minimizes the average prediction error is best among a set of models. Define cross-

validation criterion as follows:  

2

1

1 ˆ( ) ( ( , ))
T

t t t
t

CV h Y m X h
T −

=

= −∑ .     (2.32) 

 

 The cross-validation smoothing parameter is the value h  that minimizes  

where  is computed as the “leave-one-out” estimator deleting the  observation in 

the estimation process of this mean average squared error minimization. Without 

deletion, the optimum of  equates to zero because m X

( )CV h

ˆ tm−
tht

h ˆ ( , )t th Y=  for  such that 

. The advantages of cross-validation estimator are completely automatic 

smooth and no estimate of 

1,...,t = T

( ) 0MASE h =

2σ  is needed.  

 

Consider    ( ) 2

1

1 ˆ( ) ( ( ; ))
T

t t t
t

E CV h E Y m X h
T −

=

⎡= −⎢⎣ ⎦
∑ ⎤

⎥      (2.33) 

   2

1

1 ˆ( ( ; ) )
T

t t t
t

E m X h Y
T −

=

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑  

2

1

1 ˆ( ( ; ) ( ) ( ) )
T

t t t t t
t

E m X h m X m X Y
T −

=

⎡ ⎤= − +⎢ ⎥⎣ ⎦
∑ −  

2 2

1

1 ˆ[ ( ; ) ( )]
T

t t t
t

E m X h m X
T

σ −
=

= + −∑  

2 ( )MASE hσ= +  

where ( )MASE h  is the mean average squared error.  

 

 The second last equality of (2.33) holds because  and  are 

independent.  This follows that  is essentially an unbiased estimator of 

tY ˆ ( ; )t tm X h−

( )CV h

2 ( )MASE hσ + , which  is minimized at the same value of h  that could minimized ( )CV h

( )MASE h . 
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 Figure 2.4 to 2.7 illustrate the example of estimating simulated data from function 

1.3sin(17 )t t ty x u= +  where =1 to 350 and . For both local constant and 

local linear estimators, we can see that cross-validation bandwidth could capture the 

random generated data better than the plug-in bandwidth. That is the solid line of 

function estimator could move along the dotted real function line in the way that 

estimated curve much more capable to fit the real data.  

t ~ (0,0.25)tu N

 

 Please note that this is similar to the case local linear estimator prefer to local 

constant for both plug-in and cross validation bandwidth. The figures of generated data 

simulation show that local linear estimation using cross-validation bandwidth could yield 

more efficient estimation than another three cases. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.4 

Local Constant Estimator with Plug-In Bandwidth=0.2789 :  

MSE=1.7591322e-005 
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Fig 2.5 

Local Constant Estimator with Cross-Validation Bandwidth=0.1402 :  

MSE=5.9616176e-006  

 
 

 

Fig 2.6 

Local Linear Estimator with Plug-In Bandwidth=0.2789 :  

MSE=6.8113949e-006 
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Fig 2.7 

Local Linear Estimator with Cross-Validation Bandwidth=0.0408 :  

MSE=9.4700627e-007 

 
 

 

2.5 Nonparametric Volatility Function
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 There is a generalization for any time series smoothed mean and variance 

function,  and m σ , and estimate both function with nonparametric method. This is 

called volatility function for  

1( ) ( )t t t 1 ty m y y uσ− −= + ,      (2.34) 

the conditional mean and conditional variance are the function of the lag of ty , where  

are  random variables with 

tu

. . .i i d ( ) 0tE u =  and 2( ) 1tE u = ,  and m σ  are unknown 

functions on , ก ( ) 0yσ > ,  and  is a random variable independent of y" ฮ ก 0Y 1{ }T
t tu = . 

The volatility function is then defined by 2 ( )xσ . 

 

 The objective is to estimate the mean function, 1( ) ( | )t tm x E Y Y x−= = , and the 

variance function, 2 2
1( ) (( ( )) | )t tx E Y m x Y xσ −= − = . If  1{ }T

t ty =  is a stationary process, we 

could have   

( 22 2
1( ) ( | ) ( | )t t t t )1x E Y Y x E Y Y xσ − −= = − = .    (2.35) 

 

 To derive the estimator for volatility function, we could show by simple algebra 

on basic statistical concept to clarify the nonparametric estimation process of conditional 

volatility. 

Let          (2.36) 1( ) ( | )t tm x E Y Y x−= =

=

2 )

and             (2.37) 2
1( ) ( | )t tg x E Y Y x−=

          2 2
1 1 1 1 1( ( ) 2 ( ) ( ) ( ) |t t t t t t tE m Y m Y Y u Y u Y xσ σ− − − − −= + + =

2

2

 

            2 2( ) 2 ( ) ( ) ( ) ( ) ( )t tm x m x x E u x E uσ σ= + +

           2 2( ) ( )m x xσ= +

Thus, the estimator of volatility function has the form 

  2ˆ ˆ ˆ( ) ( ) ( )x g x m xσ = −        (2.38) 

Nonparametric volatility function : Local linear estimator with cross-validation bandwidth 
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 In order to define  and  by the local linear method, consider the following 

minimization problems with their corresponding estimators: 

m̂ ĝ

  0

1

ˆ
ˆ

ˆ
g

g
g

β
β

β

⎛ ⎞
⎜=
⎜
⎝ ⎠

⎟
⎟

        (2.39) 

     
( )0 1

2 2 1
0 1 1

, ' 1
arg min ( ( ) ) ( )

T
t

t t
t

Y xY Y x K
hβ β

β β −
−

=

−
= − − −∑  

                 
2 ' 2

1 2

arg min( ) ( )

( ' ) '

Y Y

Y
β

β βχ χ

χ χ χ−

= − Ω −

= Ω Ω
 

0

1

ˆ
ˆ

ˆ
m

m

m

β
β

β

⎛ ⎞
= ⎜⎜
⎝ ⎠

⎟⎟         (2.40) 

     
( )0 1

2 1
0 1 1

, ' 1

arg min ( ( ) ) ( )
T

t
t t

t

Y xY Y x K
hβ β

β β −
−

=

−
= − − −∑  

     
'

1

arg min( ) ( )

( ' ) '

Y Y

Y
β

β βχ χ

χ χ χ−

= − Ω −

= Ω Ω
 

which the last two equalities of both ˆ
gβ  and ˆ

mβ  derive from the generalized least squares 

(GLS) estimator, where 

χ  =  matrix with  row being  2T ด tht 1(1 )tY x− −     (2.41) 

       =  
1,1

1,

1

1

t

t T

Y x

Y x

−

−

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

M M

   = T  diagonal matrix with  diagonal element being Ω Tด tht 1( tY xK
h

− − )

⎟
⎟

  

2Y  =           

2
1

2
T

Y

Y

⎛ ⎞
⎜
⎜
⎜ ⎟
⎝ ⎠

M

and  is second order kernel with ( )K • ( ) 1K z dz =∫ , ( ) 0zK z dz =∫  and 2 2( ) kz K z dz σ=∫ .  
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 Under some assumptions, Härdle and Tsybakov (1997) proved that   

   ˆ ( ) ( ),
p

m mx xβ β→        (2.42) 

   ˆ ( ) ( ),
p

g gx xβ β→        (2.43) 

and    ˆ ( ) ( ),
p

x xσ σ→         (2.44) 

where ( )2
2

0 0
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )g mx g x m x x xσ β= − = − β  and 2( ) ( ) ( )x g x m xσ = − . 

    



CHAPTER 3 

REVIEW OF RELATED LITERATURES 
 

3.1 Studies on Baht Exchange Rate 

 

 Since the currency system was changed from basket to managed-floated system in 

1997, the price of Baht currency as the value of exchange rate could be much more 

respond to the market mechanism. The more flexible system means the exchange rate has 

allowed to have higher volatility at the acceptable rate of changes. Thitinantapong (2002) 

also found that floating system is statistically significantly related to the higher volatility 

in the movement of Baht.     

 

Characteristics of exchange rate 

 

 The closer linkage between global financial markets causes the loss of 

independence in monetary authority’s policy and creates a possible contagion effect that 

quickly infected the rest of Asia. Thus the exchange rate have move more sensitively to 

the changes of factors. Pimsaen (2000) used Akaike information criteria (AIC) for both 

forward and spot rates, of rolling periods on 1994-1997 and 1997-1999, to verify the 

estimation model with one lag for all cases. Augmented Dickey-Fuller (ADF) test can 

detect the stationarity of both forward and spot rates for the set of samples for Baht 

against U.S. Dollar, Japan Yen, and Germany Deutschmark. He also found the existence 

of speculation and suggested that the investors need some risk premium to compensate 

their risk. Chinprateep (1998) used the monthly data on March 1995 to March 1998 for 

vector autoregressive model (VAR) to show that the unpredictable monetary news has 

strongest effect among other economic news and some non-monetary, e.g. cycles, trends, 

deficit, and inflation, also has statistically significant effects on exchange rate movement.  
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 For application of cointegration and error correction techniques in Thailand 

macroeconomic modeling, Hataiseree (1995) modeled Purchasing Power Parity (PPP). In 

his analysis of stationarity test on Augmented Dickey Fuller (ADF) revealed that 

movements in Baht and main currencies had no long-run equilibrium relationship with 

the respective differences in inflation. And he also found that Baht/U.S. currency was I(1) 

which has high volatility and persistent shock. Another critical feature of I(1) process is 

that its variance is not constant. Khanthavit (2004) studied on Baht/U.S. exchange rate 

between periods September 6, 2000 to August 6, 2002 with number of observations 

equals to 500. He found very small conditional mean and not different significantly from 

zero. The distribution is right skewed (coefficient equates 0.7373) and has fat tail. 

Compare to zero Kurtosis coefficient of normal distribution, the studying rate of changes 

of Baht/U.S. exchange rate has coefficient of its distribution very high to 20.9527. Null 

hypothesis of normality test has rejected at every high-confidence level. Autoregressive 

degree has found to be one.  

 

3.2 Studies on Econometrics 

 

 The estimation of regression function is a pervasive statistical problem in 

scientific economics. The basic purpose of regression analysis is to study how a variable 

respond to changes in other variables. This is the intrinsic core of the answer to the 

question arises in the surprising phenomena of the explosion in the research of 

econometric subject. The next subsections will introduce the conditional 

heteroskedasticity process. Then the nonparametric econometric concept studies are also 

provided. The last subsection discuss on the comparison of econometric models 

literatures which related to our studies. 

 

3.2.1 Studies on Development of Conditional Heterogeneous  

 
 The Costs of Volatility: “Capital-market liberalization is inevitably accompanied by huge 

volatility, and this volatility impedes growth and increases poverty. It increases the risks of investing in the 
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country, and thus investors demand a risk premium in the form of higher-than-normal profits. Not only is 

growth not enhanced but poverty is increased through several channels. The high volatility increases the 

likelihood of recessions--and the poor always bear the brunt of such downturns.”1

 

 Sometimes economists might be interest in forecasting not only the level of series 

but also its variance. Macroeconomics time-series such as foreign exchange rates, 

inflation rates and stock returns may exhibit volatility which varies over time. This 

suggests that the variances of these time series may be heteroskedastic. Engle (1982) 

simultaneously modeled the mean and conditional variance due to the heteroskedasticity 

by relating the conditional variance of the disturbance term at present to the size of the 

squared disturbance terms in the past.  This function is called an autoregressive 

conditional heteroskedasticity (ARCH) because the variance is conditional on prior 

information in an autoregressive form of lagged squared disturbances. The variance of  

conditional on the information set prior to period t  is an autoregressive function of order 

 in squared lagged values of . 

tu

q tu

 

 This model is given by  

   2 2 2 2
1 1 2 2( | ) ....t t t t t qE u u u uσ ζ α α 2

t qα− − −= Ω = + + + +    (3.1)  

        t tu tσ ε=     ; ~ (0,1)t iidε  

where  denotes the information set on which tΩ 2
tσ , the variance of , is conditioned. 

This information set consists of all information prior to recent dated.  

tu

 

 The equation represents ARCH ( ) process with covariance-stationary condition:  q

     1 2 .... 1qα α α+ + + <  ,     (3.2) 

in which the unconditional variance equals 2
1 2var( ) /(1 .... )t qu σ ζ α α α= = − − − − . For 

the conditional variance to be positive, the parameters must be satisfy 0ζ >  and 

1 0.... 0qα α≥ ≥

                                                
. Engle (1982) also showed that the simple test for heteroskedasticity can 

 
 1 Stiglitz (2002) 
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be based on an ordinary F-test which regress the squared OLS residuals with their lagged 

values and a constant.        

 

 Many extensions of the ARCH model have been proposed in the past few 

decades. The generalized ARCH or GARCH model was suggested by Bollerslev (1986). 

The GARCH ( , ) model can be written as  p q

         (3.3) 2 2( | )t tE uσ = Ω t

2
t q−

q

       2 2 2 2 2
1 1 2 2 1 1 2 2... ....t t p t p t t qu u uκ δ σ δ σ δ σ α α α− − − − −= + + + + + + + +

with GARCH covariance-stationary condition: 

  1 2 1 2... .... 1pδ δ δ α α α+ + + + + + + <     (3.4) 

  

 Covariance stationarity of model is justified if and only if all the roots of 

( ) ( ) 1L Lα δ+ =  in (3.4) lie outside the unit circle, in which ( )Lα and ( )Lδ are lag 

polynomials. The conditional variance in GARCH ( ) model’s positivity constraint is 

satisfied if and only if all the coefficients in the infinite power series expansion for 

,p q

( ) /(1 ( ))L Lα δ−  are nonnegative. 

 

 In many financial researches with GARCH model the estimate for ( ) ( )L Lα δ+  

turns out to be very close to unity. This provided Engle and Bollerslev(1986) extension of 

GARCH to the class of integrated GARCH (IGARCH) that have the restrictions 

    1 2 1 2... .... 1p qδ δ δ α α α+ + + + + + + = ,   (3.5) 

so the autoregressive polynomial has a unit root, and consequently the shock of 

conditional variance is persistent because stationarity of GARCH process is violated. 

 

 In particular for negative stock returns lead to larger stock volatility than 

equivalent positive returns, Nelson (1991) proposed the Exponential GARCH 

(EGARCH) for the implication of exponential leverage effect rather than quadratic with 

guarantee of unconstrained nonnegative conditional variance. The model is 
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    2 2 1
1

1 1

ln ln t
t t

t t

u uσ ω δ σ α γ 1t

σ σ
− −

−
− −

= + + + .   (3.6) 

The leverage effect refers to the tendency for changes in returns to be negatively 

correlated with changes in volatility. 

 

 Another route for applying asymmetric effects is to set conditional variance by 
2 2 2

1 1 1t t t tu u d 2
1tσ κ α α δσ−

− − − −= + + +     (3.7) 

where  is the indicator function which equals to one for negative and zero otherwise. 

This is called Threshold GARCH (TGARCH) for allows lopsided response of volatility 

to factors with different coefficients for good and bad news. 

td tu

 

 An explicit tradeoff between conditional variance and expected returns was also 

designed to capture such relationship. Engle et al. (1987) introduced the ARCH-M model 

allowing the explicit influence of conditional variance term in the conditional mean 

equation, ( , )t ty f tσ= Ω  where the derivative of the  function with respect to the 

first element is nonzero. We can measure the effect for perceived volatility of  has on 

the level of 

(.,.)f

tu

ty .  

 

 All of the estimators in any GARCH models can be obtained by nonlinear 

estimation methods such as MLE, QMLE, or GMM which Hamilton (1994) had reviewed 

these applications and illustrated by using the numerical methods. 

   

3.2.2 Studies on Nonparametric Econometrics 

 

 For consider a class of dynamic models in which both the conditional mean and 

the conditional variance are unknown functions of the past. Härdle and Tsybakov (1997) 

derived probabilistic condition and construct the nonparametric estimators based on local 

polynomial fitting of ( ) ( )t t t ty m x x uσ= + , where . The advantage of such ~ . . .(0,1)tu i i d
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local polynomial estimators is that they approximated the volatility function better when 

it is smoother in the nonparametric situation where the exact parametric form of  and (.)m

(.)σ  is not predefined. By considered the joint local polynomial estimation of conditional 

mean and volatility function with derived ergodicity, geometric ergodicity, and mixing 

properties of a Markov chain process { }ty , and examined the rates of convergence of 

these estimators, they gave the main result of research on joint asymptotic normality by 

proved that the local linear estimators of volatility function are consistent. Inspection of 

their proofs shows that the result also holds for the nonparametric regression model with 

heteroskedasticity disturbances. 

 

 Härdle and Tsybakov (1997) also compared the efficiency of local linear 

estimator between using cross-validation and plug-in bandwidth by employed the 

prediction mean square error (PMSE) as a criterion for measuring efficiency. The kernel 

chosen was the quartic one,  

 [ ]
2 2

1,1
15( ) (1 ) ( )
16

K z z I −= − z      (3.8) 

The conclusion of their finance applications was that the cross-validation bandwidth 

method has more efficient than the plug-in bandwidth method. 

 

 Local polynomial estimators of regular stationary process have joint asymptotic 

consistency and normality (converge in probability and distribution respectively) and 

local linear estimator is a kind of local polynomial estimator for polynomial order one. 

Bossaerts et al. (1995) chose linear estimator in favor of the Nadaraya-Watson (NW) or 

Gasser-Muller (GM) estimator and applied cross validation bandwidth. They suggested 

that GM is preferable to NW because it’s smaller bias, under fixed design. But variance 

of GM is worse, under random design. However, local linear estimator combines the 

advantage of GM and NW by having the same bias as GM and the same variance as NW 

asymptotically. Hafner (1998) extended the reasoning at this point that local linear 

estimator corresponds to a local least-square problem for which easy and fast efficient 
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algorithms are available in practice. And not only the intercept of polynomial estimators 

be estimated for the regression function, but also its derivatives up to order of polynomial 

are estimated simultaneously. Bossaerts et al. (1995)’s results showed for all three 

exchange rates mean reversion and conditional heteroskedasticity.  

 

 Hafner (1998) applied a nonparametric ARCH model of order one for volatility 

function to high-frequency foreign exchange rate (HFFX). Local linear estimation 

technique was applied with cross validation bandwidth. The results showed significant 

asymmetry of the volatility function. That is the news impact curves had different shapes 

for different lags and tend to increase slower at the boundaries. This is like another 

researches done by Bossaerts et al. (1995) and  Härdle and Tsybakov (1997), they found 

an asymmetry U-shaped “smiling” form of the volatility function, for various applications 

on exchange rates, because the abnormal observations from conditional mean are highly 

correlated with the volatility. This is called “reverted leverage effect” meaning that the 

conditional variance is higher for positive lagged returns than for negative ones of the 

same size.   

 

 In practical computation, Buhlmann and Mcneil (2002) proposed the theoretical 

justification for the iterative algorithm and examples of its application for nonparametric 

first-order GARCH modeling. This paper considered the model that is very general for 

any ARCH-series models. An estimation algorithm step-by-step was described and  

examples were provided in both simulation and empirical examples. 

    

3.2.3 Literatures on Models Comparison 

 

 For compare the models in term of in-sample and out-of-sample test to study both 

the parametric and nonparametric GARCH models of financial application, there are 

some literatures find out the conclusion of these results. Pagan and Schwert (1990) 

compared several statistical models, both parametric and nonparametric, for U.S. stock 
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return volatility. With covariance stationary did not rejected at small significant levels, 

monthly stock returns from 1834-1925 was used to concentrate on models comparison. 

Parametric models (two-step conditional variance, GARCH(1,2), EGARCH(1,2), Markov 

switching-regime) tended to give an inferior explanation of the squared returns than any 

nonparametric models (Gaussian kernel and flexible Fourier form(FFF)). Both GARCH 

and Markov switching-model produced weak explanations. EGARCH had explanatory 

power close to the nonparametric models, because its parameter allowed the effect of 

stock’s asymmetric behavior between past returns and volatility. Although the superior of 

nonparametric models in the in-sample-test, they was worse than the parametric models 

for the out-of-sample prediction of conditional variances, because of too much variability 

in the estimates of 2
tσ . Pagan and Schwert (1990) suggested the results implied that 

standard parametric models are not sufficient and augmenting these models with 

nonparametric methods could yield significant increase in explanatory power. 

 

 West and Cho (1995) compared the predictive ability of six models which they 

used squared return as a proxy for a (population) variance conditional on information 

generated by past return, using U.S. Dollar versus currencies of Canada, France, 

Germany, Japan, and the United Kingdom’s weekly data of 1973-1989. The models 

include homoskedastic, GARCH(1,1), IGARCH(1,1), AR(12) in , AR(12) in | , and  

nonparametric Gaussian kernel to compare the out-of-sample realization of the square of 

the weekly change in exchange rates for horizon of one, twelve, and twenty-four weeks.  

2
tu |tu

 

 These models of conditional variance also have been formally tested for equality 

of mean squared prediction error (MSPE) across models, by chi-squared asymptotic 

inferences on three hypotheses: (i) MSPEs for all models are equal, (ii) MSPEs for the 

best model and homoskedastic model are equal, (iii) MSPEs for the homoskedastic, 

GARCH(1,1), and two autoregressive are equal. For twelve- and twenty-four-week-ahead 

forecasts of the squared weekly change were difficult to choose any model over another. 

But at one-week horizon, GARCH’s MSPE tend to have more predictive power. 
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However, statistical tests cannot reject at conventional significant levels for the null that 

GARCH’s MSPE is equal to other models. 

 

 Please note that these two comparative models literatures of Pagan and Schwert 

(1990) and West and Cho (1995) selected the local constant estimator with the plug-in 

bandwidth, for Gaussian kernel,  
1
5ˆ ( )h R jσ

−
= − ,       (3.9) 

where  σ̂  = sample standard deviation of   ;tu 1,...,t R j= −  

 R  = endpoint of first sample used in estimation of regression parameters 

 .      1,12, 24j =

 

 For make amendments to field of conditional heteroskedasticity process study, 

Hafner (1998)’s comparison of the conditional variances estimation focused on the 

asymmetry and persistence issues. Since his estimation results for parametric models 

confirmed standard results for high-frequency foreign exchange rate, namely no 

significance of the asymmetry coefficient in an EGARCH model and high persistence in 

an I-GARCH model. To find out whether these outcomes are robust against alternative 

specification of nonparametric model, local linear estimation was applied with bandwidth 

chosen by cross-validation criteria. Here, a bounded, symmetric quartic kernel function 

was used. The results from nonparametric ARCH model of order one showed significant 

asymmetry of the volatility function. In according to the EGARCH specification, the 

news impact curves have different shapes for different lags and tend to increase slower at 

the boundaries. That is, the variance function they estimated was skewed and thus 

revealed asymmetry. Volatility increased more for a large increase of rat than for a large 

decrease of the same size. This is similar to Thailand currency, according to Khanthavit 

(2004), he concluded that asymmetric autoregressive conditional heteroskedasticity 

models should be the most appreciated description of exchange rate volatility features.  

 



CHAPTER 4 

THEORETICAL FRAMEWORK AND METHODOLOGY 
 

4.1 Autoregressive Conditional Heteroskedasticity Processes 

 

 The general autoregressive process of 1{ }T
t tY =  with Gaussian white noise sequence, 

 ; 1{ }T
t tu =

2~ (0, )tu N tσ , is used in the analytical and numerical study.  

 

 The parametric regression model   1 't tY Y utβ−= +  will be the initial model to 

study. We could have 1{ }T
t tu =  with some predetermined forms of any conditional 

heteroskedasticity functions, i.e.  

ARCH:         (4.1) 2
1t uσ ζ α −= + 2

t

1tGARCH: 2 2
tκ δσ −= + 2

1tuα −+        (4.2) σ

I-GARCH:  2 2
t 1t κ δσ −= + 2

1tuα −+  with 1δ α+ =      (4.3) σ

EGARCH: 2 2
1 1 1 1ln ln / ( / )t t t t t tu uσ ω δ σ α σ γ σ 1− − − − −= + + +    (4.4) 

TGARCH: 2 2 2 2
1t1 1 1t t t tu u dκ α α δσ−

− − −= + + + t

t

− ; d  = 1 ( < 0) or 0 (otherwise) (4.5) tuσ

ARCH-M :  with 2 2
1t tuσ ζ α −= + 2

1 't t tY Y uβ ξσ−= + +      (4.6) 

 

 Assume the traditional assumption about the serial dependence of , tu t tu vtσ=   ; 

 and  is independent of ~ . . .tv i i d (0,1)N tv 1,t tY Y − , then the conditional distribution of  

is Gaussian with mean 

tY

1 'tY β−  and variance 2
tσ ; 

   
2

1
1 2 1 22

( '1( | , ,.., ) exp( )
22

t t
t t t

tt

Y Yf Y Y Y Y β
σπσ

−
− −

− −
=

)   (4.7) 

 

 Thus, any parametric functions of conditional heteroskedastic volatility could be 

estimated numerically by using MLE methods to obtain the unknown parameters. And 
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these parametric estimates from this maximization problem will be used to forecast 

 for . 2ˆ ˆ, | ,...,T j T j t TY Yσ+ + Y 1,...,50; 214,..., 263; 1,...50t T j= = =

 

4.2 Nonparametric Volatility Function: 

Local Linear Estimator with Cross-Validation Bandwidth 

 

 The nonparametric form of volatility function for this study is 

1( ) ( )t t t 1 ty m y y uσ− −= + , with volatility function estimator: 2 2ˆ ˆ ˆ( ) ( ) ( )x g x m xσ = −  where  

 and 1( ) ( | )t tm x E Y Y x−= = 2
1( ) ( | )t tg x E Y Y x−= = .  

 

Calculate optimal cross-validation bandwidth 

 

 As previous discussed in chapter two that the cross-validation bandwidth 

minimizes the cross-validation criterion: 2
1

1

1 ˆ( ) ( ( ; ))
T

t t t
t

CV h Y m y h
T − −

=

= −∑   where ˆ tm−  is a 

computed kernel estimate from the leave-one-out data set:  

, and 

1 2 2 1( , ),........, ( , ),t tY Y Y Y− −

1 1( , ),........, ( , )t t T TY Y Y Y+ − ˆ tm−  is the best mean squared error predictor of  given the 

leave-one-out data set. 

tY

 

 So we would expect the optimal smoothing parameter, , for this best predictor 

in the class {

*h

}* *
1ˆ ( ; : 0)t tm y h h− − >  to be the one that’s close to the conditional mean of , 

. 

tY

1( )tm Y −

 

 So in practice, numerical optimization by Newton algorithm in CML module in 

GAUSS program could yield the computed sum of squared residuals such that 

 is minimized. The bandwidth, , that derived from this 

optimization is completely automatic. 

*
1

1

ˆ( ) ( ( ; ))
T

t t t
t

RSS h Y m y h− −
=

= −∑ * 2 *h
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Local linear estimation in the nonparametric volatility function.  

  

 The cross-validation bandwidth, , derived from  minimization will be used 

for the local linear estimators of nonparametric volatility function. The recursive iteration 

method search for  

*h RSS

0

1

ˆ
ˆ

ˆ
g

g
g

β
β

β

⎛ ⎞
⎜ ⎟= ≡
⎜ ⎟
⎝ ⎠

( ) 1 21 1 1 1
1 1* *1 1

1 1 1 1

1 1
( ( ) 1 ( ) ' ) ( )T Tt t t t

t tt t
t t t t

Y y Y yK Y y K
Y y Y yh h

−− − − −
− −= =

− − − −

⎛ ⎞ ⎛− −
−⎜ ⎟ ⎜− −⎝ ⎠ ⎝ ⎠

∑ ∑ tY
⎞
⎟  (4.8)  

0

1

ˆ
ˆ

ˆ
m

m

m

β
β

β

⎛ ⎞
= ≡⎜ ⎟⎜ ⎟
⎝ ⎠

( ) 11 1 1 1
1 1* *1 1

1 1 1 1

1 1
( ( ) 1 ( ) ' ) ( )T Tt t t t

t tt t
t t t t

Y y Y y
tK Y y K Y

Y y Y yh h
−− − − −

− −= =
− − − −

⎛ ⎞ ⎛− −
−⎜ ⎟ ⎜− −⎝ ⎠ ⎝ ⎠

∑ ∑ ⎞
⎟  (4.9)  

 

 Thus, from the recurrence of iterated algorithm, we could find the forecast of  

 based on  equivalent to  2 ( )σ • tY

( )2
2 2

1 1 1 0 1 0
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t t g t m ty g y m y y yσ β− − − − −= − = − 1β .    (4.10) 

 

4.3 Data Availability and Description  

 

 This study will employ weekly data of Baht/U.S.$ rate in 2000-2005. Since there 

is no historical weekly data publicly announcement available, so the weekly data could be 

obtained by taking average the daily spot rate among the opening days for each week. 

This is the same as the Bank of Thailand's calculation procedure for monthly exchange 

rate by average over all opening days in that month. For the period between January, 

2000 to January, 2005 of 1,325 daily spot rates data available was downloaded from the 

Federal Reserve Bank of New York. Because this released series provides zero for 

closing dates so it's much easier to written the weekly average calculation program. This 

customized program could yields output of 264 observations of percentage change in the 

level of Baht/U.S. exchange rate, that is 1100*(ln( ) ln( ))t tER ER −−  where  is the tER
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exchange rate at time t . So the series for variables in studying models are 

 and 1100*(ln( ) ln( ))t tY ER E −= − tR 1t tX Y −= .        

 

Descriptive Statistics 

 

 The scope of our study is to compare the predictive performance between 

nonparametric and parametric models by comparing both for the level and the volatility 

of weekly percentage Baht/U.S. rate of return in 2000-2005 and, also, to incorporate with 

in-sample properties. Figure 4.1 represents the series which we used in study. The 

investigation on characteristics of data in this section will explore for next chapter of both 

parametric and nonparametric approaches studies.  
 

Fig 4.1  

Percentage Weekly Baht/U.S. Return, 2000-2005, with 264 observations 

 
 

 Table 4.1 represents the descriptive statistics for the distribution of percentage 

return of Baht/U.S. rate. We can see that the expectation mean of series is very small 

(0.126E-04) and right skewed bias because positive coefficient of skewness (0.561577). 

 These imply the asymmetric probability of distribution. The measure of peakness, 
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coefficient of kurtosis, which is 4.478065 (higher than 3.00 in normal distribution case) 

imply more peaked probability distribution function or leptokurtic. The Jarque-Bera 

statistic decisively rejects the hypothesis of normal distribution.     
 

Table 4.1  

Descriptive Statistics 

 Mean  0.012550 

 Median -0.044315 

 Maximum 2.463100 

 Minimum -1.845640 

 Std. Dev.  0.624152 

 Skewness  0.561577 

 Kurtosis  4.478065 

Jarque-Bera 37.90766 

Probability 0.000000 
Number of observations = 265 

  

  
Figure 4.2 

ACF and PACF functions 

 
 

 Model selection criteria by autocorrelation and partial autocorrelation functions 

could verify that the lag of return series has statistical relation on current return series at 

autoregressive degree one. As it is show in figure 4.2. However, the full observations in-
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sample-test of all possible models, i.e. AR(1) with or without constant, show that the best 

model is AR(1) without constant. Because the constant in AR(1) mean equation is not 

significant at all level of standard test level (constant estimator’s p-Statistic = 0.8721). So 

the percentage rate of Baht/U.S. return series used in study will be based on using first-

order autoregressive without constant as the main function, 1t tY Y tuβ −= + .  

 
Table 4.2  

OLS AR(1) and its statistics 

   10.3104t tY Y −=  

       s.d. =  (0.078640)  

p-value  =  [0.000051] 
 

    10.310179 0.000059t tY Y −= +  
       s.d.= (0.000366)    ( 0.058688) 

p-value = [0.8721]        [0.000000] 
       Note:  (.) = standard deviation  and  [.] = p-value  

 

 Although the null hypothesis of having the unit root has rejected with very small 

p-value of Augmented Dickey-Fuller test with deploying of constant and linear trend as 

exogenous variables (1.82e-21 or shown as 0.0000 in table 4.3).  
 

Table 4.3 

Unit Root test and ARCH-LM test  

Unit Root Test Statistic Probability 

Augmented Dickey-Fuller t-test  -12.14690 0.000000 

Test Critical Values :      1% level -3.993335  

                                        5% level -3.427004  

   

ARCH Test Statistic Probability 

T*R-squared 14.56590 0.000135 

F-statistic 15.30563 0.000117 
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 LM-test hypothesis is the test of none heteroskedasticity, which the test is being 

asymptotical chi-squared test. The corresponding result on test of the relationship 

between residuals from autoregressive degree one’s OLS squared residual and its lags 

show that there exists the heteroskedasticity at very high significant level (p-statistic is 

0.000136) which shown in table 4.3. The regression’s F-statistic and its p-statistic are 

also has the results according to LM-test. 

 

 In conclusion, the weekly percentage rate of return in study is not distributed as 

normal with right skewed and leptokurtic. The autocorrelation function and OLS statistics 

suggest that the base model for study is the AR(1) without constant model. And the last 

important feature of this series is the heteroskedasticity relationship. So these facts are the 

reasoning to the next chapter of conditional heteroskedasticity models study. 
 

 

4.4 Predictive Performance Comparison 

 

 The objectives of this study are to examine the differences between nonparametric 

and parametric volatility models estimation and also to compare predictability 

performance. The series used in prediction from various models are composed of 

estimated return and estimated conditional heteroskedasticity series, so that we need to 

find the true basis for compare with the estimated series. The return is exquisitely since 

it’s already available by obtaining and manipulating data as previously described to use 

for this study. However, conditional variance is not such be as this case. There’re many 

literatures such as Pagan and Schwert (1990), West and Cho (1994), and Khanthavit 

(1997) use the unconditional sample standard variance as the base to compare with their 

estimated volatility. But the comparison between conditional and unconditional may not 

valid in theory. So this study proposes another base for compare with the estimated 

conditional heteroskedasticity from any models as the alternative way.  
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 The proposed base is the squared return with theoretical reasoning behind. 

Because from 1( )t t t ty m y uσ−= + , where  and 1( tm y − ) 2
tσ  are any unknown functional 

form with , one can show that  ~ (0,1)tu iid

1 1 1)( | ) ( ( ) |t t t t t tvar y y var m y u yσ− −= + t t tvar u y− 1( | )σ −= 2
tσ=  (4.11) 

 

 So we use (population) variance of ty , 2
t tE y , conditional on information generated 

by past return as an estimator of 1( | )t tvar y y − . West and Cho (1995) was a paper that 

came to similar conclusion to employed squared return. We therefore will limit ourselves 

to models in which the conditional mean of ty  is zero. 

   

 However, the traditional unconditional variance derived from sample standard 

variance, as in Pagan and Schwert (1990) and Khanthavit (1997), will not be neglected to 

use as a base case. The computed sample standard variance is 

  
250

1

1({ } { })
213

T i T i
t i t i

i
y E y+ +

+ +
=

−∑       (4.12) 

for  and { . This is just a simple rolling 

sample standard deviation for different 50 information sets. 

2,...,51; 215,..., 264; 1,...50t T i= = = } ,...,T
t ty y y= T

  

 So there are three types of forecast comparison by rolling mean square prediction 

error, that are (1) compare between true and estimated return, (2.1) compare between 

unconditional and estimated conditional variance, and (2.2) compare between estimated 

conditional variance and the squared return. The results will be presented in next chapter. 

 



CHAPTER 5 

EMPIRICAL RESULTS 
 

 The empirical results of comparisons between nonparametric and parametric 

econometric models as the objectives of study are reported in this chapter. They are 

partitioned into three parts of in-sample estimation, out-of-sample performance and test 

of unbiasedness respectively. All are analyzed in comparison between the previous 

proposed competitive models. 

 

5.1 Introduction to Estimation Results

 

 The nonparametric model is the volatility function estimated by local linear 

estimator with cross-validation bandwidth, which is the debut of nonparametric 

econometrics approach in empirical literature on Thailand exchange rate. The parametric 

models used in this study include Autoregressive Conditional Heteroskedasticity (ARCH), 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Threshold 

GARCH (TGARCH), Integrated GARCH (I-GARCH), Exponential GARCH 

(EGARCH), and ARCH in Mean (ARCH-M). ARCH and GARCH are the common 

models in time series econometrics. While TGARCH and EGARCH are the asymmetric 

autoregressive conditional heteroskedasticity models that could describe the skewed 

distribution of volatility. I-GARCH model is for the volatility persistent feature of series. 

ARCH-M can capture the trade-off relationship between the expected returns and 

conditional variance. All the parametric models will have the various predetermined 

structural form of conditional variance equation such that we have the disturbance error 

equal tout t tσ ε= ; ~ (0,1)t iidε . 

 

 We will estimate the unknown parameters of variance equations in case of 

parametric models. These parametric series will be used for weighted the observations of 

regression to obtain the generalized least squared (GLS) estimator of autoregressive 
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degree one function with out constant. On the other way, we’ll estimate the unknown 

functional form of regression function by nonparametric approach to derive the 

conditional heteroskedastic series.  

 

 An important objective of study is to be search the best predictive performance 

model among all the competitive models. Then, for out-of-sample criteria, we will use 

rolling mean squared prediction error (rolling MSPE) as the measurement of predictive 

performance. Rolling MSPE means that each of the squared prediction errors 

computation will have equal number of observations usages in predicting of the (t+1)th 

observation.  

 

 For yearly prediction error calculation of full-sample 264 observations in AR(1), 

this iterated recurrences will be done for 50 times to calculate rolling MSPE, so we will 

use 1st to 213th observation for the first round and rolling by one observation for each 

additional round of iteration until the last round use 51st to 263rd  observation, i.e. 

,

,...,  where  is the weekly percentage 

rate of return and  is the information set. 

1 ( , ; 2,.., 214, 1,.., 213)t i t jy Y x Y i jΨ = = = = = 2 ( , ; 3,.., 215, 2,.., 214)t i t jy Y x Y i jΨ = = = = =

50 ( , ; 51,.., 263, 50,.., 262)t i t jy Y x Y i jΨ = = = = = tY

tΨ

 

 However, the estimations of these models have the results as shown below use the 

full sample observations. These tables are parametric volatility estimations of percentage 

weekly Baht/U.S. return in 2000-2005 with all-263 observations. Each set of tables for 

each model will compose of the regression coefficients and statistics for conditional mean 

equation, conditional variance equation, and the traditional unbiasedness test equation. 

To test the unbiasedness for each model, the regression 2 2ˆ ˆt tu tα βσ ξ= + +  will test (i) 

0α =  and (ii) 1β = . Because the conditional expectation of squared estimated residual 

should be equal to the conditional variance or 2ˆ ˆt t tE u 2σ= . However, the simple OLS 
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model of AR(1) without constant will haven’t the result of unbiasedness test since its 

conditional variance is given to be constant by a classical regression assumption. 

 

 For each model, the log-likelihood was maximized numerically using the 

optimization program CML (Constrained Maximum Likelihood) from the GAUSS 

programming language. The constraints will be imposed to restrict the stationarity and 

positivity condition for all parametric models. And only positivity constraint is restricted 

for optimal cross-validation bandwidth of nonparametric model as previously discussed 

in chapter 3. For estimation and prediction purposes, there are different programs to 

achieve the purposes. These customized programs are tested by the simulated data 

generation with the predetermined structure of equations. The program testing are 

satisfied if the estimators converge to the predetermined values of coefficients.  

 

 

5.2 In-Sample Estimation

 

 The in-sample evidence in table 5.2 to 5.7 are the parametric estimators and 

statistics of each parametric heteroskedasticity models. These are the results of full 

sample estimation with 263 observations for AR(1) mean equation and various 

parametric conditional variance equations. The out-of-sample illustrations in figure (b) 

and (c) are also represented accordingly with the in-sample tables for clear inspection of 

the estimation results. Please note that for the variance - covariance matrix correction of 

estimator inefficiency, we use White’s Heteroskedasticity Consistent Covariance for 

appropriate robust inferences.  

 

 Altogether, the descriptive statistics in previous chapter and the time-varying 

variances illustration in Figure 5.1 (a) show that nonparametric volatility function models 

could capture the features of percentage weekly Baht/U.S. return in 2000-2005 which its 

scattered distribution is asymmetric and there exists heteroskedasticity.  
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Fig 5.1  

(a) Nonparametric estimated volatility 

 
(b) Nonparametric estimated and true return 
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(c) Nonparametric estimated volatility and squared return 

 
 Figure 5.1 (a) show that the nonparametric estimated volatility function is skewed 

and thus reveals asymmetry as display a U-shaped structure, as Härdle and Tsybakov 

(1997) and Bossaerts et al. (1995) called a “smiling face”. The fluctuation of percentage 

return will be higher when it is not around its mean. We can observe that downward 

movements in the weekly Baht/U.S. percentage return are followed by higher volatilities 

than upward movements of the same size of changes. That is the abnormal return will 

have more volatility especially for the negative abnormal. And figure 5.1 (a) also 

illustrates that the risks of returns are much higher for extreme values taken on the past 

day. This asymmetric volatility function is smoothed and estimated by cross-validation 

criteria with local linear estimator.  for *h 1ˆ ( tg y )−  and in equation (4.10) are 

0.5735 and 0.6967 respectively. 

1ˆ ( tm y − )

 

 Table 5.1 reports the result for OLS estimation of model AR(1) without constant. 

The estimated coefficient is 0.3104 with very high significant. However, we are already 

discussing about the existence of the heteroskedasticity feature of this model in chapter 4 
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of descriptive statistics table. Therefore this ordinary least square estimator is not an 

efficient one. In figure 5.1 of OLS estimated and true percentage rate of Baht/U.S. return, 

we can see that the normal OLS predictors are quite different from the actual values. 

Although the least square estimator is asymptotically unbiased, but in this empirical of 

small sample size we can find inefficient of prediction.  
Table 5.1 

Estimation output for OLS 

10.3104t tY Y −=     

            s.d. =  (0.0786)     

     p-value  =  [0.0000]    

R-squared 0.0965 Mean dependent variable 0.0098 

Adjusted R-squared 0.0965 S.D. dependent variable 0.6238 

S.E. of regression 0.5929 Akaike info criterion  0.0082 

Sum squared residual 92.1100 Schwarz criterion 0.0098 

Log likelihood -0.0828 F-statistic 27.9000 

Note:  (.) = standard deviation  and  [.] = p-value  

 

Fig 5.2 

OLS estimated and true return 
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 The next tables until the last one are the results of nonparametric conditional 

heteroskedasticity models which the unknown parameters are estimated from the 

maximum likelihood estimation method. Starting the initial value for the mean equation 

from the simple OLS estimator and for the variance equation start from AR(1) estimator 

of the squared residuals process. We also impose covariance stationarity and positivity 

constraints as the previous discussion in chapter 3. The experiences from trials and error 

learning procedure show that without these constraints, the estimations may be diverge or 

possibly to obtain the irrational results.  
 

 ARCH model given in table 5.2 show that all estimated parameters are significant 

at very high level with the coefficient of mean equation is very close to of simple OLS 

model. Its variance equation has significant constant and slope coefficient equate 0.278 

and 0.196 respectively.  

 
Table 5.2 

Estimation output for ARCH 

            10.3386t tY Y −=   

                s.d. =  (0.0671)  

         p-value  =  [0.0000]  

       2 2
10.2780 0.1961t tuσ −= +     

          s.d. =  (0.0300)  (0.0786)    

   p-value  =  [0.0000]  [0.0132]    

R-squared 0.1054 Mean dependent variable 0.0098 

Adjusted R-squared 0.1054 S.D. dependent variable 0.6238 

S.E. of regression 0.5932 Akaike info criterion  0.0142 

Sum squared residual 92.1900 Schwarz criterion 0.0158 

Log likelihood -0.8685 F-statistic 30.7521 

Note:  (.) = standard deviation  and  [.] = p-value  
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Fig 5.3 

(a) ARCH estimated volatility 

 
(b) ARCH estimated and true return 
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(c) ARCH estimated volatility and squared return 

 
 The prediction of percentage return with ARCH model as illustrated in figure 5.3 

(b) seems to be much more fitted to the actual values than previous figure of simple OLS 

model prediction. ARCH estimated volatility function in figure 5.3 (a) show the rough 

curve which the value of percentage return around its mean will not have large vary in its 

corresponding variance. In this figure, we can easily seen that the variance of variance is 

very small around its return’s mean. Figure 5.3 (c) depicts the estimated volatility 

compared with squared return. The movements are reflex in the same motion but the 

squared return has greater versatility than ARCH volatility. 

 

 Table 5.3 is the GARCH result that the coefficients of lagged conditional variance 

and lagged squared residual estimation yield summation turns out to be close to unity 

implies the volatility persistence. This is consistent with the common results from another 

studies  of financial applications. Since this summation between the coefficients of lagged 

conditional variance and lagged squared residual is the measure for volatility persistence. 

Persistence increases as this summation approaches one.  
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 However, the summation equates to 0.795 which seems not too high as in some 

applications which are higher than 0.9 i.e. Pagan and Schwert (1990), West and Cho 

(1995) and Engle (2002). All parameters of GARCH model estimation are statistically 

significant, except the constant of variance equation has p-value equates 0.06689.  

 

 The prediction performance illustration of GARCH model in figure 5.4 (b) is also 

similar to of ARCH model in the sense that it could captures the true percentage return 

much better than the simple OLS model. The similarity between ARCH and GARCH 

also occurred to the conditional heteroskedasticity prediction in which the plotted 

volatility function reveals the asymmetric curve with rough movement and tend to have 

higher value for the return which more deviated from its mean. This is resulted in figure 

5.4 (a). The squared return which used as proxy of true variance is also has the same 

motion of movement as the GARCH predicted conditional volatility as in figure 5.4 (c). 

 
Table 5.3 

Estimation output for GARCH 

      10.3191t tY Y −=    

       s.d. =  (0.0624)    

 p-value = [0.0000]    

2 2
1 10.0710 0.1621 0.6333t tu 2

tσ σ− −= + +     

     s.d. =  (0.0472) (0.0643)  (0.1733)    

p-value= [0.1337] [0.0123]  [0.0003]    

R-squared 0.0993 Mean dependent variable 0.0098 

Adjusted R-squared 0.0993 S.D. dependent variable 0.6238 

S.E. of regression 0.5930 Akaike info criterion  0.0141 

Sum squared residual 92.1200 Schwarz criterion 0.0157 

Log likelihood -0.8556 F-statistic 28.7745 

        Note:  (.) = standard deviation  and  [.] = p-value  
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Fig 5.4 

(a) GARCH estimated volatility 

 
(b) GARCH estimated and true return 
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(c) GARCH estimated volatility and squared return 

 
 

 Because it is often observed that the realized return below the mean of the market 

are followed by higher volatility than realized return above the mean for the same 

magnitude of dispersion. To account for this phenomenon, we propose asymmetric 

GARCH models that describe the asymmetric response to good and bad news. These 

models are Threshold GARCH (TGARCH) and  Exponential GARCH (EGARCH) 

 

 TGARCH (table 5.4) and EGARCH (table 5.5) results are co-consistent altogether 

in the sense that the negative response of bad news of both models are not substantial. 

Although their size and direction are rational but their statistics are not significant. The 

coefficient of negative residuals in TGARCH model equates to 0.06755 which is very 

small. However, its p-statistic could infer that bad news has the insignificant effect to the 

conditional volatility.  
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Table 5.4 

Estimation output for TGARCH 

             10.3227t tY Y −=    

               s.d. =  (0.0614)    

        p-value  =  [0.0000]    

   2 2 2
1 1 10.0636 0.1181 0.0675 0.6647t t t tu u d 2

1tσ σ− − − −= + + +    

      s.d. = (0.0403)  (0.0665)  (0.0766)  (0.1513)   

p-value = [0.0582]  [0.0385]  [0.1895]  [0.0000]    

R-squared 0.1004 Mean dependent variable 0.0098 

Adjusted R-squared 0.1004 S.D. dependent variable 0.6238 

S.E. of regression 0.5930 Akaike info criterion  0.0141 

Sum squared residual 92.1200 Schwarz criterion 0.0157 

Log likelihood -0.8542 F-statistic 29.1400 

       Note:  (.) = standard deviation  and  [.] = p-value  

 

 

Fig 5.5 

(a) TGARCH estimated volatility 
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(b) TGARCH estimated and true return 

 
(c) TGARCH estimated volatility and squared return 

 
 This is similar to the log of conditional variance equation in EGARCH model, 

that the log of conditional variance is not responsive to negative lagged residual because 
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in table 5.5 reveals that -0.05869 estimator is very small number in absolute term and 

extremely not significant. So we can conclude that the asymmetric response is not found 

in these models. 
 

Table 5.5 

Estimation output for EGARCH 

              10.2917t tY Y −=    

                 s.d. =  (0.0620)    

         p-value  =  [0.0000]    

2 2
1 1 1 1ln 0.4926 0.6680ln 0.1774 / 0.0586( / )t t t t t tu uσ σ σ 1σ− − − − −= − + + −   

        s.d. =  (0.3143)   (0.2330)    (0.0866)          (0.0540)  

  p-value =  [0.1182]   [0.0044]    [0.0416]          [0.2785]  

R-squared 0.0907 Mean dependent variable 0.0098 

Adjusted R-squared 0.0907 S.D. dependent variable 0.6238 

S.E. of regression 0.5930 Akaike info criterion  0.0142 

Sum squared residual 92.1500 Schwarz criterion 0.0158 

Log likelihood -0.8708 F-statistic 26.0500 

       Note:  (.) = standard deviation  and  [.] = p-value  

 

 

For TGARCH predicted conditional heteroskedasticity series, their visual 

representations are very similar to the ARCH and GARCH cases in both values and 

structures. But for EGARCH estimation, there’s a lower outlier on the right-hand side of 

the minimum and the asymmetry can revealed clearly. These can be seen in figure 5.6 (a). 

And EGARCH predicted conditional heteroskedasticity has lower motility compared than 

ARCH, GARCH, and TGARCH. It’s clearly shown in figure 5.6 (c).  
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Fig 5.6 

(a) EGARCH estimated volatility 

 
(b) EGARCH estimated and true return 
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(c) EGARCH estimated volatility and squared return 

 
 

 Covariance nonstationary process of I-GARCH estimation is reported in table 5.6 

in which the results show that all the estimators are significant in both mean and 

conditional variance equations. The unity of summation in lagged ARCH and lagged 

GRACH effects was restricted to capture the persistence of conditional variance.  

 

 The results in table 5.6 have the significant estimators of lagged ARCH and 

lagged GARCH effects equal to 0.1815 and 0.8185 respectively, given the volatility 

persistence restriction is imposed in equality constraint of maximum likelihood 

estimation process. However, note that Thai Baht/U.S. percentage rate of return follow 

GARCH process which is stationary. Thus, the interpretation of this volatility persistence 

phenomenon is the result from a model misspecification since another tables of 

estimation results suggest that this series has a finite variance (as the numerical 

optimization approaches of another different models are converge at sufficiently fast rate, 
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and the optimum at boundary of constraints is infrequently occurs from the inappropriate 

starting initial values). 

 

 Figure 5.7 (a) and (c) represent the quite differences of I-GARCH predicted 

conditional heteroskedasticity from another previous conditional volatility models. Since  

I-GARCH predicted variance is very volatile, although around its return’s zero mean. We 

can see from figure 5.7 (a) that, although it has roughed u-shape function, the movements 

are vary too much. And, surprisingly, this volatility function could capture squared return 

most efficient compared to another models in which its move is closer to squared return.        

 
Table 5.6 

Estimation output for I-GARCH 

           10.3136t tY Y −=    

               s.d. =  (0.0600)   

        p-value  =  [0.0000]   

      2 2
1 10.0118 0.1815 0.8185t tu 2

tσ σ− −= + +   

        s.d. = (0.0064)  (0.0482)  (0.0482)  

  p-value = [0.0344]  [0.0001]  [0.0000]  

R-squared 0.0975 Mean dependent variable 0.0098 

Adjusted R-squared 0.0975 S.D. dependent variable 0.6238 

S.E. of regression 0.5929 Akaike info criterion  0.0142 

Sum squared residual 92.1100 Schwarz criterion 0.0158 

Log likelihood -0.8723 F-statistic 28.2200 

       Note:  (.) = standard deviation  and  [.] = p-value  
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Fig 5.7 

(a) I-GARCH estimated volatility 

 
 

(b) I-GARCH estimated and true return 

 
 



 60

(c) IGARCH estimated volatility and squared return 

.   

 

 According to capital asset pricing model (CAPM), the expected excess returns is 

proportional to its own conditional variance. Engle et al. (1987)’s ARCH-M which 

introduced to capture such relationships is estimated and its results is reported in table 5.7. 

The model, which is extended to allow the conditional variance to be a determinant of the 

mean, have the finding results that the estimators of variance equation are very close to 

ARCH model in table 5.2. Such that the estimators of constant and lagged square residual 

are 0.27 and 0.19 respectively, and they are significant.  

 

 However, the extension of including the lagged of ARCH effect in the conditional 

mean equation seems to be insignificant at all standard level of inference test with p-

value equals to 0.5894. Thus, there is no tradeoff between the expected return of weekly 

Thai baht/U.S. percentage rate of return and its conditional variance. So the small 

negative effect, -0.0125, of the incremental in current conditional variance has not effect 

to the changes on the percentage return in values. In ARCH-M model, if we wipe out the 
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conditional variance effect in mean equation which is not significant and the remaining 

significant estimators of mean and variance equations are seems to be duplicated from 

ARCH model. And this duplication is not only for in-sample estimation but also out-of-

sample prediction that ARCH-M has the similar features of predicted conditional 

heteroskedasticity. Figure 5.3 (a) and (b) of ARCH model are almost the same as figure 

5.8 (a) and (b) of ARCH-M, respectively. Therefore, the conclusion about conditional 

volatility function drawn from ARCH-M model estimation is the same as ARCH model.        

 
Table 5.7 

Estimation output for ARCH-M 

2
10.3372 0.0125t tY Y tσ−= −     

            s.d. =  (0.0677)    (0.0555)    

    p-value  =  [0.0000]    [0.5894]    

       2 2
10.2774 0.1985t tuσ −= +     

          s.d. =  (0.0301) (0.0800)    

  p-value  =  [0.0000]  [0.0068]    

R-squared 0.1045 Mean dependent variable 0.0098 

Adjusted R-squared 0.1010 S.D. dependent variable 0.6238 

S.E. of regression 0.5945 Akaike info criterion  0.0218 

Sum squared residual 92.2500 Schwarz criterion 0.0250 

Log likelihood -0.8685 F-statistic 15.1000 

       Note:  (.) = standard deviation  and  [.] = p-value  
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Fig 5.8 

(a) ARCH-M estimated volatility 

 
(b) ARCH-M estimated and true return 
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(c) ARCH-M estimated volatility and squared return 

 
 

 

5.3 Out-of-Sample Performance

 

 The process and sets of data employed in rolling MSPE process described 

previously have the outcomes of endeavor in table 5.8 We compare between the 

forecasted return with the true data in the sense of square in their differences for the sake 

of return forecasting performance comparison among competitive models. For variance 

comparison of conditional heteroskedasticity equations, we have two types of comparison 

between forecasted variance of various models with (1) the estimated nonparametric 

conditional variance or (2) the unconditional variance. The best forecasting performance 

model pay smallest rolling mean squared prediction error in term of smallest sizes in 

mean of the squared in differences between the forecast and the true value. Note that 

simple OLS with constant variance model could not have comparison contribution.                
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Table 5.8 
Compare Rolling MSPE (# of rolling = 50) 

1) True and Estimated Percentage Return 
MSPE of Nonparametric 0.2777 
MSPE of OLS 0.3795 
MSPE of ARCH 0.2724 
MSPE of GARCH 0.2722 
MSPE of TGARCH 0.2719 
MSPE of I-GARCH 0.2722 
MSPE of EGARCH 0.5159 
MSPE of ARCH-M 0.2721 
  

 2.1) Estimated and Unconditional Variance 
MSPE of Nonparametric 0.0688 
MSPE of ARCH 0.0960 
MSPE of GARCH 0.1096 
MSPE of TGARCH 0.1230 
MSPE of I-GARCH 0.1055 
MSPE of EGARCH 0.1096 
MSPE of ARCH-M 0.0975 
  

2.2) Estimated Variance and Squared Return  
MSPE of Nonparametric 0.3237 
MSPE of ARCH 0.3408 
MSPE of GARCH 0.3400 
MSPE of TGARCH 0.3321 
MSPE of I-GARCH 0.3558 
MSPE of EGARCH 0.3387 
MSPE of ARCH-M 0.3461 

* Included 263 Rolling Observations for each 50 iterations 
 
 

 Table 5.8 are the results of the comparison of the rolling MSPE of percentage 

return and variance. For comparing the out-of-sample performance of percentage rate of 

return prediction, TGARCH yields the smallest rolling MSPE where most of the model 

have approximately close to the smallest one as nonparametric, ARCH, GARCH, I-

GARCH and ARCH-M. By overview in contra to the comparison aspect, the results are 

quite satisfaction since the series level is range on -1.8456 to 2.4631. EGARCH and OLS 

have highest rolling MSPE equal 0.5159 and 0.3795 respectively.  

 

 To compare between estimated conditional heteroskedasticity with the 

unconditional variance as in Pagan and Schwert (1990), West and Cho (1994), and 

Khanthavit (1997). In which the comparison examination by Pagan and Schwert (1990) 
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and Khanthavit (1997) was employed with the increasing number of observations, 

appending, MSPE rather than rolling MSPE as did by West and Cho (1994). The 

comparison results suggest that nonparametric model and ARCH have the smallest 

rolling MSPE equal to 0.0688 and 0.0960 respectively. Note that OLS is not included 

because its constant variance is trivial to perform this. 

 

 For exploring the best model that can predict the conditional heteroskedasticity’s 

nonequivalence from the squared return, nonparametric volatility model use local linear 

estimator with cross-validation bandwidth can perform the smallest rolling MSPE 

compare to the any other parametric models. 

 

 For this particular conclusion, nonparametric model can predict the Baht/U.S. 

percentage rate of weekly return inferior to many parametric model. This is similar to the 

out-of-sample performance deteriorated of nonparametric models as in Pagan and 

Schwert (1990). And the results from West and Cho (1994) and Khanthavit (1997) were 

not conclusive on which nonparametric or parametric models could be outperformed. 

However, our proposed squared return from theoretical reasoning to use it as a base to 

verify the error from conditional heteroskedasticity prediction can show that the 

nonparametric model can surpasses that of any parametric conditional volatility.         

 

5.4 Unbiasedness Test 

 

 Table 5.9 reports the results of traditional examination for unbiasedness of all 

models deployed in the study. This test emerged in various financial applications of 

conditional heteroskedasticity works i.e. Pagan and Schwert (1990), West and Cho 

(1994), Khanthavit (1997), and Hafner (1998). They consider unbiasedness of the 

conditional variances estimation as an alternative measure of model performance. The 

last two columns in table 5.9 illustrate the chi-squared test of unbiasedness hypothesis. 

The last column contributes to White’s heteroskedasticity consistent covariance matrix 
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while the previous use simple OLS covariance. The fallacy of inference may occurred if 

we use simple OLS covariance as the choice of covariance matrix because only GARCH 

model is fail to the unbiasedness test while another remaining models are significant at all 

standard level of statistical test. However, if using corrected White’s instead, only 

nonparametric model endure to indicate the unbiasedness. Thus, there is the evidence 

indicate that I-GARCH model is prefer to another models for the in-sample test. 
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Table 5.9 
Test for unbiasedness with model 2 2ˆ ˆt tu tα βσ ξ= + +  

Included Observations: 263 

 
Log- 

likelihood 
α  β  2R  F-statistic 2

(2)χ a 2
(2)χ b

NP -1.4515 -1.3231 5.3588 0.0372 4.9664 10.1898 3.53076 
  (1.053) (3.156)  [0.0261] [0.0061] [0.1711] 
  [0.2101] [0.0907]     
        
ARCH -0.0940 -0.0844 1.2536 0.0604 8.3270 15.8441 0.1749 
  (0.2019) (0.6194)   [0.7062] [0.9162] 
  [0.6761] [0.0439]     
        
GARCH -0.0940 0.0099 0.9753 0.0627 8.6620 0.0122 0.0081 
  (0.1351) (0.4290)   [0.9938] [0.9959] 
  [0.9416] [0.0238]     
        
TGARCH -0.0918 -0.0569 1.1840 0.0744 10.4100 8.3928 0.1523 
  (0.1471) (0.4745)   [0.0150] [0.9267] 
  [0.6505] [0.0066]     
        
I-GARCH -0.0946 0.1445 0.4951 0.0441 5.9329 15.2970 6.6556 
  (0.0715) (0.1988)   [0.0004 [0.0359] 
  [0.0443] [0.0133]     
        
EGARCH -0.0935 -0.5239 2.5736 0.0695 9.6058 7.3698 2.3514 
  (0.3514) (1.0860)   [0.0250] [0.3086] 
  [0.1372] [0.0184]     
        
ARCH-M -0.0942 -0.0785 1.2360 0.0602 8.2890 13.5555 0.1517 
  (0.2015) (0.6183)   [0.0011] [0.9270] 
  [0.6513] [0.0233]     
        

 
. Standard deviations using White’s heteroskedasticity correction are in parentheses 

under the coefficient estimates. The p-values for t distribution also provided in 
blankets. R-squared is the coefficient of determination. F-statistic reported is from 
the test of the hypothesis that the slope coefficients (excluding the intercept) in a 
regression is zero. Under the null hypothesis of linear restriction 0α = and 1β = , 
the Wald statistic which has an asymptotic chi-squared distribution will be the 
justification for null hypothesis testing with the respective p-value for chi-squared 
distribution in the blankets below. Last two columns based on different choices of 
covariance matrix, those are (a) simple regression covariance, and (b) White’s 
heteroskedasticity consistent covariance. 

 



CHAPTER 6 

CONCLUSIONS AND LIMITATIONS 
 

6.1 Conclusions 

 

 This thesis studies the volatility models in both parametric and nonparametric 

approaches. The data used in this study is the weekly Baht/U.S.$ rate of return in 1999-

2005 to investigate the best prediction model for the percentage return and conditional 

volatility. The descriptive statistics for the distribution reveals that the expectation mean 

of series is very small and right skewed and leptokurtic. The standard tests reject the 

hypothesis of normal distribution and none heteroskedasticity. And autocorrelation 

function and OLS statistics explore that the model for study is the AR(1) without constant 

model.     

 

 The empirical results of comparisons between nonparametric and parametric 

econometric models are rationed into three sections of in- and out-of-sample estimation 

and unbiasedness test. The competitive models of conditional heteroskedasticity 

functions are nonparametric volatility function estimated by local linear estimator with 

cross-validation criteria and several parametric models.  

 

 - Nonparametric volatility function estimates the smoothed and asymmetric U-

smile shape of conditional heteroskedasticity. The fluctuation of percentage return will be 

higher when it is not around its mean especially if the past returns were below zero mean. 

This is called asymmetric smiling face. Other models, estimated by parametric nonlinear 

estimation, also reveal the smiling face and almost of them have the same structure and 

values. However, only ARCH and ARCH-M are rational in both theoretical and empirical 

senses for their low volatility around zero mean. Surprisingly, asymmetric coefficients of 

EGARCH and TGARCH are not significant while their conditional volatility functions 

figures reveal that their asymmetry is not skewed as other models.       

68 
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- (1) The best model for return out-of-sample performance is TGARCH, although 

it has no clear comparative advantage in return prediction. Its rolling MSPE of predicted 

return is not higher from other models significantly. (2) For the conditional variance 

prediction, nonparametric model are the best for out-of-sample criteria both deployed 

unconditional variance and squared return as the basis. 

 

- Test of unbiasedness consider chi-squared hypothesis to investigate model 

performance. The results of using classical OLS variance covariance matrix are 

significance in almost every model of both parametric and nonparametric approaches, 

except for GARCH model. However, if we employ White’s heteroskedasticity consistent 

covariance matrix correction instead, only I-GARCH model is significant for indicate the 

unbiasedness of conditional heteroskedasticity estimation.           

 

 Since there is no exact model which could be the best model in all criteria for both 

estimation and prediction views. So there are inconclusive evidences for the different 

approaches of nonparametric and parametric that which could yield the most efficient 

results. Although nonparametric model could be the best model for the conditional 

volatility prediction, as this is our main objective of this study. So the researcher and 

applied econometrician should deploy different models for the different purposes, which 

is to predict or to estimate. Thus, in our recommendation for the generality, the 

combinations of nonparametric and parametric models, i.e. semiparametric, could yield 

the improvement in balancing between prediction and estimation purposes. Its hybrid 

feature is an interesting point for further applied research in econometrics field. And there 

are many financial researches employ our proposed volatility function for estimate the 

conditional variance of high frequency foreign exchange rate (HFFX) and have the clear 

result of efficiency. Thus, the nonparametric may could be employed to the high 

frequency series.     
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 From this empirical econometrics study, nonparametric volatility model can 

perform the volatility forecast. So the contributions from the study are the rectification in 

applied financial applications such as risk management, asset pricing, and investment 

analysis. Because these works are require variance to use as a measure of risk for making 

decision, i.e. value at risk (VaR), or capital asset pricing model (CAPM) for examples. 

And there are many grounds for more advanced research.    

 

6.2 Limitations 

 

1) The lack of experiences and limited time of the researcher are due to the result 

that many new advanced ARCH models, as the advancements in this field was 

summarized in Engle (2002), such as (Markov) Switching ARCH, option pricing models, 

or large scale ARCH models for examples, cannot covered in this study. This is the same 

as nonparametric approaches. There are many estimation methods such as spline 

estimators, series estimators, or k-NN estimators, etc. While there are many choices of 

data driven bandwidths could selected for estimation, for examples, generalized cross-

validation or finite prediction error. See Härdle and Linton (1994).     

 2) More lags can’t be included in the mean function as well as the variance 

function for nonparametric model. This would bring up the “curse of dimensionality” one 

usually has in nonparametric estimation. As the possible solution could be the additive 

model class.   

3) The prediction criteria using rolling MSPE is implicitly allowed for a failure of 

stationarity by using rolling samples.  

 4) Goodness of fit tests and robustness tests of these models should be 

concentrated. Because these are the limitations in models estimation which the extensions 

on these tests could increase the confidence for applied these conditional volatility 

models.  
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APPENDICES 



/* er.g is the program for transform daily exchange rate to weekly  */ 
/* percentage rate of return which weekly average by working day */ 
 
new ; cls ; 
format 4,6 ; 
output file = retw.rst on ; 
load d[1325,1] = er.txt ;    /* Daily exchange rate data */ 
w = zeros(rows(d)/5,1) ; 
sw = zeros(rows(d)/5,2) ; 
i = 1 ; j = 1 ; do while i <= 1325 ; 
 a = zeros(5,1) ;     /* Vector of days in a week */ 
 a = d[i:i+4] ; 
 a2 = selif(a,(a[.,.] .ne 0)) ;          /* Vector of active days in a week */ 
 w[j] = meanc(a2) ;    /* WEEKLY OBSERVATIONS */ 
 sw[j,.] = sumc(a2)~rows(a2) ;   /* Information for verification */ 
i = i + 5 ; j = j + 1 ; endo ; 
 
w[2:rows(w)]~sw[2:rows(w),.]~100*(ln(w[2:rows(w)])-ln(w[1:rows(w)-1])) ; 

 

 er.g - 1 



/*  garchall.g is the estimation program for autoregressive   */ 
/* conditional heteroscedasticity series to compute full sample  */ 
/* estimators and statistics. The end of program also test the  */ 
/* unbiasedness of estimated conditional variance.    */ 
 
new ; cls ; format 2,6 ; 
tstrt = timestr(0) ; dstrt = date ;   
 
library CML, pgraph ; 
_cml_DirTol = 1e-6 ; 
_cml_MaxIters = 9e+2 ; 
_cml_Algorithm = 3 ; 
_cml_LineSearch = 1 ; 
_cml_CovPar = 1 ;  
output file = thesall.rst ; output reset on ; 
 
n_obs = 264 ;              
load data[n_obs,1] = retw.txt ;     /* retw = ln(ER_t) - ln(ER_t-1) */ 
data = data*100 ;     /* percentage rate of returm */ 
 
case = 0 ; do while case <= 6 ; 
  
 y = data[2:rows(data),.] ; n = rows(y) ; 
 x = data[1:rows(data)-1,.] ; 
 b0 = inv(x'x)*x'y ;  
 u = y - x*b0 ;  
 u2 = u^2 ;  
 xu_2 = ones(rows(u2)-1,1)~u2[1:rows(u2)-1,.] ; 
 a = inv(xu_2'xu_2)*xu_2'u2[2:rows(u2),.] ; /* Initial parameters (1) */ 
 sy = zeros(n,1) ; sx = zeros(n,1) ; 
 is = 1 ; do while is <= n ; 
  sy[is,.] = stdc(y[1:is,1]) ; sx[is,.] = stdc(x[1:is,1]) ; 
 is = is + 1 ; endo ; 
 bs = inv(sx'sx)*sx'sy ;     /* Initial parameters (2) */ 
 e0_2 = sumc(u2)/n ; h0_2 = e0_2 ;  /* possible disturbance at time 0 */ 
 h0 = zeros(n,1) ;  
 L = h0 ; u_hat = h0 ; 
output off ; 
 
if case == 0 ;    
 " @--------- Nonparametric & OLS ---------@ " ; 
 _cml_DirTol = 1e-6 ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_Bounds = { 0.00015 1e0 } ; 
  h_np = h0 ;   
  b_ini = stdc(x)*(n^(-1/5)) ;   
  m_hat = LocalLin(y, x, b_ini) ; 
  g_hat = LocalLin(y^2, x, b_ini) ;  
  v_hat = g_hat - (m_hat^2) ; 
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  h_np = v_hat ; 
  u_hat_np = (y./sqrt(v_hat)) - (m_hat./sqrt(v_hat)) ;  
  /*[ y = m(y-1) + v(y-1)*u ]*/   
  bols = b0 ;    /* OLS Estimator */ 
 
elseif case == 1 ;    
 " @--------- ARCH ---------@ " ; 
 _cml_DirTol = 1e-2 ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_ParNames = "b0"|"ba0"|"ba1" ;  
 _cml_A = zeros(1,3) ;    /* _cml_A * p = _cml_B */ 
 _cml_B = 0 ;     /* (Equality Constraint) */ 
 _cml_C = zeros(1,2)~-ones(1,1) ;  /* _cml_C * p >= _cml_D */ 
 _cml_D = -1 ;     /* (Inquality Constraint) */  
 _cml_Bounds = { -1e0 1e0 , -1e0 1e0 , -1e0 1e0 } ; /* Parameter Boundaries */  
  h_a = h0 ;  
  ba0 = a[1,1]/10 ; 
  ba1 = a[2,1] ; 
  p_a = b0|ba0|ba1 ; 
  {p_a, f_a, g_a, cov_a, rcode_a} = cmlPRT(cml(y~x, 0, &arch, p_a)) ; 
  "maximized function valued of ARCH : " ftos(f_a,"%#*.*lG",15,6); "" ; 
  "Variance-Covarianve Matrix of ARCH Parameters" ; 
  cov_a ; "" ;  
  u_hat_a = (y - x*p_a[1,1])^2 ; 
 
elseif case == 2 ;   
 " @--------- GARCH ---------@ " ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_ParNames = "b0"|"bg0"|"ag1"|"bg1" ;  
 _cml_A = zeros(1,4) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,2)~-ones(1,2) ; 
 _cml_D = -1 ; 
 _cml_Bounds = { -1e0 1e0 , -1e0 1.5e0 , -1e0 1e0 , -1e0 1e0 } ;  
  h_g = h0 ;  
  bg0 = a[1,1]/100 ; 
  ag1 = a[2,1] ;  
  bg1 = bs/2 ;  
  p_g = b0|bg0|ag1|bg1 ; 
  {p_g, f_g, g_g, cov_g, rcode_g} = cmlPRT(cml(y~x, 0, &garch, p_g)) ; 
  "maximized function valued of GARCH : " ftos(f_g,"%#*.*lG",15,6);  "" ; 
  "Variance-Covarianve Matrix of GARCH Parameters" ; 
  cov_g ; "" ;  
  u_hat_g = (y - x*p_g[1,1])^2 ; 
 
elseif case == 3 ;   
 " @--------- TGARCH ---------@ " ; 
 _cml_Algorithm = 1 ; 
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 _cml_LineSearch = 2 ; 
 _cml_MaxIters = 2e+2 ; 
 _cml_ParNames = "b0"|"bt0"|"bt1"|"bt_n"|"bt2" ;  
 _cml_A = zeros(1,5) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,2)~-ones(1,3) ; 
 _cml_D = -1 ; 
 _cml_Bounds = { -1e0 1e0 , -.1e0 1e0 , 1e-10 1e0 , 0e0 1e0 , -1e0 1e0 } ;  
  h_t = h0 ;  
  bt0 = a[1,1]/100 ;  
  bt1 = a[2,1] ; 
  bt_n = a[2,1]/10 ; 
  bt2 = bs/1.5 ; 
  p_t = b0|bt0|bt1|bt_n|bt2 ; 
  {p_t, f_t, g_t, cov_t, rcode_t} = cmlPRT(cml(y~x, 0, &tgarch, p_t)) ;  
  "maximized function valued of TGARCH : " ftos(f_t,"%#*.*lG",15,6);  "" ;  
  "Variance-Covarianve Matrix of TGARCH Parameters" ; 
  cov_t ; "" ;  
  u_hat_t = (y - x*p_t[1,1])^2 ; 
 
elseif case == 4 ;   
 " @--------- I-GARCH ---------@ " ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_MaxIters = 4e+1 ; 
 cml_ParNames = "b0"|"bi0"|"ai1"|"bi1" ;  
 _cml_A = zeros(1,2)~ones(1,2) ; 
 _cml_B = 1 ; 
 _cml_C = zeros(1,4) ; 
 _cml_D = 0 ; 
 _cml_Bounds = { -1e0 1e0 , -1e0 1e0 , -1e0 1e0 , -1e0 1e0 } ;  
  h_i = h0 ; 
  bi0 = a[1,1]/100 ;  
  ai1 = a[2,1] ;   
  bi1 = 1 - ai1 ;     /* Restricted to Unt Root */ 
  p_i = b0|bi0|ai1|bi1 ; 
  {p_i, f_i, g_i, cov_i, rcode_i} = cmlPRT(cml(y~x, 0, &igarch, p_i)) ;  
  "maximized function valued of I-GARCH : " ftos(f_i,"%#*.*lG",15,6);  "" ; 
  "Variance-Covarianve Matrix of I-GARCH Parameters" ; 
  cov_i ; "" ;  
  u_hat_i = (y - x*p_i[1,1])^2 ; 
 
elseif case == 5 ;  
 " @--------- EGARCH ---------@ " ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_MaxIters = 4e+2 ; 
 _cml_ParNames = "b0"|"be0"|"be1"|"be2"|"be3" ;  
 _cml_A = zeros(1,5) ; 
 _cml_B = 0 ; 
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 _cml_C = zeros(1,5) ; 
 _cml_D = 0 ;  
 _cml_Bounds = { -1e0 1e0 , -15e0 15e0 , -10e0 10e0 , -10e0 10e0, -10e0 10e0 } ;  
  ln_h_e = h0 ; 
  be0 = -a[1,1]*10 ;  
  be1 = a[2,1]*2 ;   
  be2 = a[2,1] ;   
  be3 = -a[2,1]/30 ;   
  p_e = b0|be0|be1|be2|be3 ; 
  {p_e, f_e, g_e, cov_e, rcode_e} = cmlPRT(cml(y~x, 0, &egarch, p_e)) ;  
  "maximized function valued of EGARCH : " ftos(f_e,"%#*.*lG",15,6);  "" ; 
  "Variance-Covarianve Matrix of EGARCH Parameters" ; 
  cov_e ; "" ;  
  u_hat_e = (y - x*p_e[1,1])^2 ; 
 
elseif case == 6 ;   
 " @--------- ARCH-M ---------@ " ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_ParNames = "b0"|"bh"|"bm0"|"am1" ;  
 _cml_A = zeros(1,4) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,4) ; 
 _cml_D = 0 ; 
 _cml_Bounds = { -1.5e0 1.5e0 , -5e0 5e0 ,-1e0 1e0 , -1e0 1e0 } ;  
  h_m = h0 ;  
  bh = bs*1.2 ; 
  bh = -bs*1.2 ; 
  bm0 = a[1,1]/1000 ; 
  am1 = a[2,1] ;  
  p_m = b0|bh|bm0|am1 ; 
  {p_m, f_m, g_m, cov_m, rcode_m} = cmlPRT(cml(y~x, 0, &archm, p_m)) ; 
  "maximized function valued of ARCH-M : " ftos(f_m,"%#*.*lG",15,6);  "" ; 
  "Variance-Covarianve Matrix of ARCH-M Parameters" ; 
  cov_m ; "" ;  
  u_hat_m = (y - x*p_m[1,1] - sqrt(h_m)*p_m[2,1])^2 ; 
 endif ; 
 
case = case + 1 ; endo ; 
 
output on ; 
 
"" ; "" ;  
"<<<<<<<<<<<<<<<<            >>>>>>>>>>>>>>>>" ; 
""; ""; 
 
 
" @--------- Nonparametric ---------@ " ; 
"" ; 
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" @--------- OLS ---------@ " ; 
betaols(y, x) ;  "" ; 
 
" @--------- ARCH ---------@ " ; 
_cml_ParNames = "b0"|"ba0"|"ba1" ;  
{p_a, f_a, g_a, cov_a, rcode_a} = cmlPRT(p_a, f_a, g_a, cov_a, rcode_a) ; 
"maximized function valued of ARCH : " f_a ; "" ; 
stat(p_a, f_a, cov_a)  "" ; 
"" ; 
 
" @--------- GARCH ---------@ " ; 
_cml_ParNames = "b0"|"bg0"|"ag1"|"bg1" ;  
{p_g, f_g, g_g, cov_g, rcode_g} = cmlPRT(p_g, f_g, g_g, cov_g, rcode_g) ; 
"maximized function valued of GARCH : " f_g ; "" ; 
stat(p_g, f_g, cov_g) ; "" ; 
"" ; 
 
" @--------- TGARCH ---------@ " ; 
_cml_ParNames = "b0"|"bt0"|"bt1"|"bt_n"|"bt2" ;  
{p_t, f_t, g_t, cov_t, rcode_t} = cmlPRT(p_t, f_t, g_t, cov_t, rcode_t) ; 
"maximized function valued of TGARCH : " f_t ; "" ; 
stat(p_t, f_t, cov_t) ; "" ; 
"" ; 
 
" @--------- I-GARCH ---------@ " ; 
_cml_ParNames = "b0"|"bi0"|"ai1"|"bi1" ;  
{p_i, f_i, g_i, cov_i, rcode_i} = cmlPRT(p_i, f_i, g_i, cov_i, rcode_i) ; 
"maximized function valued of I-GARCH : " f_i ; "" ; 
stat(p_i, f_i, cov_i) ; "" ; 
"" ; 
 
" @--------- EGARCH ---------@ " ; 
_cml_ParNames = "b0"|"be0"|"be1"|"be2"|"be3" ;  
{p_e, f_e, g_e, cov_e, rcode_e} = cmlPRT(p_e, f_e, g_e, cov_e, rcode_e) ; 
"maximized function valued of EGARCH : " f_e ; "" ; 
stat(p_e, f_e, real(cov_e)) ; "" ; 
"" ; 
 
" @--------- ARCH-M ---------@ " ; 
_cml_ParNames = "b0"|"b0-h"|"bm0"|"am1" ;  
{p_m, f_m, g_m, cov_m, rcode_m} = cmlPRT(p_m, f_m, g_m, cov_m, rcode_m) ; 
"maximized function valued of ARCH-M : " f_m ; "" ; 
x = x~sqrt(h_m) ; /* Independent Variables for Mean Equation */ 
stat(p_m, f_m, real(cov_m)) ; "" ; 
"" ; 
"" ; 
 
"Test for Unbiasedness " ; 
"e^2 = alpha0 + beta0*h_hat + error " ; "" ; 
"Included Observations: " n ; "" ; 
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"NP" ; "" ; forecast(u_hat_np, h_np) ; "" ; 
"ARCH" ; "" ; forecast(u_hat_a, h_a) ; "" ; 
"GARCH" ; "" ; forecast(u_hat_g, h_g) ; "" ; 
"TGARCH" ; "" ; forecast(u_hat_t, h_t) ; "" ; 
"I-GARCH" ; "" ; forecast(u_hat_i, h_i) ; "" ; 
"EGARCH" ; "" ; forecast(u_hat_e, exp(ln_h_e)) ; "" ; 
"ARCH-M" ; "" ; forecast(u_hat_m, h_m) ; "" ; 
 
 
tfini = timestr(0) ; dfini = date ;   
"" ; "" ; "start at   " tstrt ; dstrt[1:3,.]' ; 
"" ; "" ; "finish at   " tfini ; dfini[1:3,.]' ; 
 
 
 
proc(1) = LocalLin(y,x,b_ini) ; 
local kernel, r, i, xx, xk, xi, beta, b, func, grad, varc, retc ; 
kernel = zeros(n,1) ;  
r = zeros(n,1) ; 
{b, func, grad, varc, retc}= cmlPRT(cml(y~x, 0, &cvll, b_ini)) ;  
i = 1 ; do while i <= n ; 
 xi = x[i,.]*ones(n,1) ; 
 kernel = (1/sqrt(2*pi))*exp(-0.5* ((x - xi)/b)^2 ); 
 xx = ones(n,1)~(x-xi) ; 
 xk = xx.*kernel ; 
 beta = inv(xk'xx)*xk'y ; 
 r[i,.]  = beta[1,.] ; 
i = i + 1 ; endo ; 
retp(r) ; 
endp ; 
 
 
proc(1) = cvll(th,z) ; 
local b, i, xi, sr, r, kernel, xx, xk, beta ; 
b = th[1,1] ; y = z[.,1] ; x = z[.,2:cols(z)] ; 
sr = zeros(n,1) ; 
i = 1 ; do while i <= n ; 
 xi = x[i,.]*ones(n,1) ;   

kernel = (1/sqrt(2*pi))*exp(-0.5* ((x - xi)/b)^2 ) ; 
kernel[i,.] = 0 ; 
xx = ones(n,1)~(x-xi) ; 
xk = xx.*kernel ; 
beta = inv(xk'xx)*xk'y ;  
sr[i,.] = ( y[i,.]-beta[1,.] )^2;  

 i = i + 1 ; endo; 
retp(-sumc(sr)) ; 
endp ; 
 
 
proc(1) = arch(th,z) ; 
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local ig, u_hat, p_f, f_f, g_f, cov_f, rcode_f ; 
b0 = th[1:cols(x),1] ;  
ba0 = th[cols(x)+1,1] ;  
ba1 = th[cols(x)+2,1] ;    
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_a[ig,.] = ba0/(1-ba1) ;  
 else ; 
  h_a[ig,.] = ba0 + ba1*(y[ig-1,.]-x[ig-1,.]*b0)^2 ;   
 endif ; 
l[ig,.] = - 0.5*ln(2*pi*h_a[ig,.]) - 0.5*( (y[ig,.] - x[ig,.]*b0) ^2 )/h_a[ig,.] ;  
ig = ig + 1 ; endo ; 
retp(sumc(l)) ;   
endp ; 
 
 
proc(1) = garch(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ;  
bg0 = th[cols(x)+1,1] ;  
ag1 = th[cols(x)+2,1] ;  
bg1 = th[cols(x)+3,1] ;  
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_g[ig,.] = bg0/(1-bg1-ag1)  ;    
 else ; 
  h_g[ig,.] = bg0 + ag1*((y[ig-1,.] - x[ig-1,.]*b0)^2) + bg1*h_g[ig-1,.] ;  
 endif ; 
l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(h_g[ig,.]) - 0.5*( (y[ig,.] - x[ig,.]*b0)^2 )/h_g[ig,.] ; 
ig = ig + 1 ; endo ; 
retp(sumc(l)) ;   
endp ; 
 
 
proc(1) = tgarch(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ; 
bt0 = th[cols(x)+1,1] ;  
bt1 = th[cols(x)+2,1] ;  
bt_n = th[cols(x)+3,1] ;  
bt2 = th[cols(x)+4,1] ; 
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_t[ig,.] = bt0 / (1-bt1-bt_n-bt2) ;    
 else ; 
  if (y[ig-1,.]-x[ig-1,.]*b0) < 0 ; 
  h_t[ig,.] = bt0 + (bt1*(y[ig-1,.]-x[ig-1,.]*b0)^2)  
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bt_n*((y[ig-1,.]-x[ig-1,.]*b0)^2)  + bt2*h_t[ig-1,.] ;   
  else ; 
  h_t[ig,.] = bt0 + (bt1*(y[ig-1,.]-x[ig-1,.]*b0)^2) + bt2*h_t[ig-1,.] ;   
  endif ; 
 endif ; 
l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(h_t[ig,.]) - 0.5*( (y[ig,.] - x[ig,.]*b0)^2 )/h_t[ig,.] ; 
ig = ig + 1 ; endo ; 
retp(sumc(l)) ; 
endp ; 
 
 
proc(1) = igarch(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ;  
bi0 = th[cols(x)+1,1] ;  
ai1 = th[cols(x)+2,1] ;  
bi1 = th[cols(x)+3,1] ;  
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_i[ig,.] = bi0 + ai1*e0_2 + bi1*h0_2  ; 
 else ; 
  h_i[ig,.] = bi0 + ai1*(y[ig-1,.]-x[ig-1,.]*b0)^2 + bi1*h_i[ig-1,.] ;  
 endif ; 
l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(h_i[ig,.]) - 0.5*( (y[ig,.] - x[ig,.]*b0)^2 )/h_i[ig,.] ; 
ig = ig + 1 ; endo ; 
retp(sumc(l)) ; 
endp ;  
 
 
proc(1) = egarch(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ;  
be0 = th[cols(x)+1,1] ;  
be1 = th[cols(x)+2,1] ;  
be2 = th[cols(x)+3,1] ;  
be3 = th[cols(x)+4,1] ;  
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  ln_h_e[ig,.] = be0 / (1 - be1 - be2 - be3)  ;  
 else ; 
  ln_h_e[ig,.] = be0 + be1*ln_h_e[ig-1,.]  

+ be2*abs( (y[ig-1,.]-x[ig-1,.]*b0) / sqrt(exp(ln_h_e[ig-1,.])) )  
+ be3*(y[ig-1,.]-x[ig-1,.]*b0)/sqrt(exp(ln_h_e[ig-1,.]))  ;  

 endif ; 
l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(exp(ln_h_e[ig,.]))  

- 0.5*( (y[ig,.] - x[ig,.]*b0)^2 )/(exp(ln_h_e[ig,.])) ;  
ig = ig + 1 ; endo ; 
retp(real(l)) ; 
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endp ;  
 
 
proc(1) = archm(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ;  
bh = th[cols(x)+1,1] ;  
bm0 = th[cols(x)+2,1] ;  
am1 = th[cols(x)+3,1] ;  
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_m[ig,.] = bm0/(1-am1)  ;    
 else ; 
  h_m[ig,.] = bm0 + am1*( (y[ig-1,.] - x[ig-1,.]*b0  

- sqrt(h_m[ig-1,.])*bh)^2 )  ;   
 endif ; 
l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(h_m[ig,.])  

- 0.5*( (y[ig,.] - x[ig,.]*b0 - sqrt(h_m[ig,.])*bh)^2 )/h_m[ig,.] ; 
ig = ig + 1 ; endo ; 
retp(sumc(l)) ; 
endp ; 
 
 
/* Procedure for estimated statistics for parametric volatility models */ 
proc(1) = stat(bp, f, varcov) ;  
local k, u, sse, wvarcov, sd, n, tstat, p, ybar2, b, r2 ; 
 if cols(x) == 1 ;  
  b = bp[1,1] ; 
 else ;  
  b = bp[1:2,.] ;  
 endif ; 
 k = cols(x) ; n = rows(x) ; 
 u = y - x*b ; 
 sse = u'u/(n-k) ; 
 sd = sqrt(diag(varcov)); 
 tstat = bp./sd ; 
 p = cdftc(tstat,n-k) ; 
 ybar2 = (sumc(y)/n)^2; 
 r2 = (b'x'y - n*ybar2)/(y'y - n*ybar2); 
 "Included Observations: " n ; "" ; 
 "Coeffcient  Std. Error   t-Statistic      Prob."; 
 bp~sd~tstat~p ;  
  "" ; 
 "R-squared = " r2      
 "Mean dependent var = " meanc(y) ; 
 "Adjusted R-squared = " 1-(1-r2)*((n-1)/(n-k)) ;  
 "S.D. dependent var = " sqrt( sumc((y-meanc(y))^2) / (n-1) ) ; 
 "S.E. of regression = " sqrt(sse) ; 
 "AIC =  " -2*(f/n)+2*(k/n) ; 
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 "Sum squared resid = "  u'u ; 
 "SC =  " -2*(f/n)+k*log(n)/n ; 
 "Log likelihood = " f ; 
 "F-statistic = " (r2/(1-r2))*((n-k)/k-1) ; 
  "" ; 
 "Inverse of the Hessian Variance-Covarianve Matrix" ; 
 retp(varcov) ; 
endp ; 
 
 
/* Procedure for test of unbiasedness in conditional variance estimation */ 
proc(1) = forecast(u_hat, h_hat) ; 
local yz, n, xz, kz, b, u, sse, wvarcov, co, sd, tstat, p, ybar2, r2, theta, fun, gra, cov, ret, theta0, 
sigma, aic, sc, pf, wa, wb, q, g, pc2a, pc2b ; 
 yz = u_hat ; n = rows(yz) ; 
 xz = ones(n,1)~h_hat ; kz = cols(xz); 
 b = inv(xz'xz)*xz'yz; 
 u = yz - xz*b; 
 sse = u'u/(n-kz) ; 
 theta0 = b|sqrt(sse) ; 
 _cml_A = zeros(1,3) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,3) ; 
 _cml_D = 0 ; 
 _cml_Bounds = { -1.5e0 1.5e0 , -1.5e0 1.5e0 , -1.5e0 1.5e0 } ;  
 _cml_ParNames = "alpha0"|"beta0"|"sigma" ; 
 output off ; {theta, fun, gra, cov, ret} = cmlprt(cml(yz~xz, 0, &mle, theta0)) ; 

output on ; 
 "" ; 
 /* White's Covariance Matrix */ 
 wvarcov = (n/(n-kz))*inv(xz'xz)*(xz'*diagrv(eye(n),u^2)*xz)*inv(xz'xz) ; 
 
 sd = sqrt(diag(wvarcov)); 
 tstat = b./sd; 
 p = cdftc(tstat,n-kz); 
 ybar2 = (sumc(yz)/n)^2; 
 r2 = (b'xz'yz - n*ybar2)/(yz'yz - n*ybar2); 
 aic = -2*(fun/n)+2*(kz/n) ; 
 sc =   -2*(fun/n)+kz*log(n)/n ; 
 pf = cdffc((r2/(1-r2))*((n-kz)/kz-1),kz-1,n-kz) ; 
 g = eye(2) ;  
 q = 0|1 ; 

/* Wald's Test with OLS variance-covariance */   
 wa = (g*b - q)'inv(g*sse*inv(x'x)*g')*(g*b - q) ; 
 pc2a = cdfchic(wa,2) ; 

/* Wald's Test with White's variance-covariance */ 
 wb = (g*b - q)'inv(g*wvarcov*g')*(g*b - q) ; 
 pc2b = cdfchic(wb,2) ; 
 
 "Log-likelihood alpha beta R-squared F-statistic  Chi-squared(a) Chi-squared(b) " ; "" ; 
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 fun~b'~r2~(r2/(1-r2))*((n-kz)/kz-1)~wa~wb ; 
 0~sd'~0~pf~pc2a~pc2b ; 
 0~tstat' ; 
 0~p' ;  
/* retp(wvarcov) ; */ 
retp("") ; 
endp ; 
 
 
proc mle(theta, z) ; 
local yz, xz, kz, b, sigma ; 
yz = z[.,1] ; xz = z[.,2:cols(z)] ; kz = cols(xz) ; 
b = theta[1:kz] ;  
sigma = theta[kz+1] ; 
 retp(-0.5*ln(2*pi*sigma^2)-0.5*(yz-xz*b)'(yz-xz*b)/sigma^2) ; 
endp ; 
 
 
proc(1) = betaols(y, x) ; 
local n, k, b, u, sse, wvarcov, co, sd, tstat, p, ybar2, r2, ar2, theta, funct, gradi, covar, retco, 
theta0, sigma, aic ; 
 n = rows(y) ; k = cols(x); 
 b = inv(x'x)*x'y; 
 u = y - x*b; 
 sse = u'u/(n-k) ; 
 theta0 = b|sqrt(sse) ; 
 _cml_A = zeros(1,2) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,2) ; 
 _cml_D = 0 ; 
 _cml_Bounds = { -1.5e0 1.5e0 , -1.5e0 1.5e0 } ;  
 _cml_ParNames = "beta"|"sigma" ; 
 {theta, funct, gradi, covar, retco} = cmlprt(cml(y~x, 0, &mle, theta0)) ; 
 "" ; 
 wvarcov = (n/(n-k))*inv(x'x)*(x'*diagrv(eye(n),u^2)*x)*inv(x'x) ; 
 sd = sqrt(diag(wvarcov)); 
 tstat = b./sd; 
 p = cdftc(tstat,n-k); 
 ybar2 = (sumc(y)/n)^2; 
 r2 = (b'x'y - n*ybar2)/(y'y - n*ybar2); 
 "Ordinary Least Square " ; 
 "Included Observations: " n ; "" ; 
 "Coeffcient  Std. Error   t-Statistic      Prob."; 
 b~sd~tstat~p ;  "" ; 
 "R-squared = " r2 ; 

"Mean dependent var = " meanc(y) ; 
 "Adjusted R-squared = " 1-(1-r2)*((n-1)/(n-k)) ; 

"S.D. dependent var = " sqrt( sumc((y-meanc(y))^2) / (n-1) ) ; 
 "S.E. of regression = " sqrt(sse) ; 

"AIC =  " -2*(funct/n)+2*(k/n) ; 
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 "Sum squared resid = "  u'u ; 
"SC =  " -2*(funct/n)+k*log(n)/n ; 

 "Log likelihood = " funct ; 
"F-statistic = " (r2/(1-r2))*((n-k)/k-1) ; 

 " "; 
  r2~meanc(y) ; 
 1-(1-r2)*((n-1)/(n-k))~sqrt( sumc((y-meanc(y))^2) / (n-1) ) ; 
 sqrt(sse)~-2*(funct/n)+2*(k/n) ; 
 u'u~-2*(funct/n)+k*log(n)/n ; 
 funct~(r2/(1-r2))*((n-k)/k-1) ; 
 "" ; 
 "White's Variance-Covarianve Matrix" ; 
retp(wvarcov) ; 
endp ; 
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/*  garch.g is the program for compare out-of-sample performances    */ 
/* between nonparametric and parametric approaches of conditional   */  
/* heteroscedasticity models by rolling MSPE        */ 
 
new ; cls ; format 2,6 ; 
tstrt = timestr(0) ; dstrt = date ;   
 
library CML, pgraph ; 
_cml_DirTol = 1e-6 ; 
_cml_MaxIters = 9e+1 ; 
_cml_Algorithm = 3 ; 
_cml_LineSearch = 1 ; 
_cml_CovPar = 1 ;  
 
output file = thesis.rst ; output reset on ; 
 
n_obs = 264 ;         
load data[n_obs,1] = retw.txt ;     /* retw = ln(ER_t) - ln(ER_t-1) */ 
data = data*100 ; 
 
i_ini = 214 ;      /* start first set of data, t = 1,.,214 */  
 
spe = zeros(n_obs-i_ini,1) ;    /* zeros vector for squared prediction*/ 
       /* error (SPE) with size = 50  */ 
vyhat = spe ;      /* OLS yhat vector  */ 
spe_ols = spe ;      /* OLS SPE */  
  
/* vyhat_X = Predicted return vector from model Xth   */ 
/* spe_X = SPE for Xth model's predicted return    */ 
/* speh1_X = SPE of predicted variance compared with h_np   */ 
/* speh2_X = SPE compared with h_unc (type I) or y^2 (type II) */ 
/* vh_X = predicted conditional variance from model Xth   */ 
vyhat_a = spe ; spe_a = spe ; speh1_a = spe ; speh2_a = spe ; vh_a = spe ; 
vyhat_g = spe ; spe_g = spe ; speh1_g = spe ; speh2_g = spe ; vh_g = spe ; 
vyhat_t = spe ; spe_t = spe ; speh1_t = spe ; speh2_t = spe ; vh_t = spe ; 
vyhat_i = spe ; spe_i = spe ; speh1_i = spe ; speh2_i = spe ; vh_i = spe ; 
vyhat_e = spe ; spe_e = spe ; speh1_e = spe ; speh2_e = spe ; vh_e = spe ; 
vyhat_m = spe ; spe_m = spe ; speh1_m = spe ; speh2_m = spe ; vh_m = spe ; 
vyhat_np = spe ; spe_np = spe ;  
speh_np = spe ;      /* SPE of predicted NP variance */ 
vh_np = spe ;      /* Predicted nonparametric variance */ 
h_np = spe ;       /* estimated nonparametric variance  */ 
h_unc = spe ;      /* estimated unconditional variance */ 
 
case = 0 ; do while case <= 6 ; 
i = 1 ; do while i <= n_obs - i_ini  ; 
 y = data[1+i:i_ini+i-1,.] ; n = rows(y) ; 
 x = data[i:i_ini+i-2,.] ; 
 b0 = inv(x'x)*x'y ;  
 u = y - x*b0 ;  
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 u2 = u^2 ;  
 xu_2 = ones(rows(u2)-1,1)~u2[1:rows(u2)-1,.] ; 
 a = inv(xu_2'xu_2)*xu_2'u2[2:rows(u2),.] ; /* Initial parameters (1) */ 
 sy = zeros(n,1) ; sx = zeros(n,1) ; 
 is = 1 ; do while is <= n ; 
  sy[is,.] = stdc(y[1:is,1]) ; sx[is,.] = stdc(x[1:is,1]) ; 
 is = is + 1 ; endo ; 
 bs = inv(sx'sx)*sx'sy ;    /* Initial parameters (2) */ 
 h0_2 = sumc(u2)/n ; e0_2 = sumc(u2)/n ;  /* possible disturbance at time 0 */ 
 h0 = zeros(n,1) ; L = h0 ; 
output off ;  
 
if case == 0 ;    
 " @--------- Nonparametric & OLS ---------@ " ; 
 _cml_DirTol = 1e-6 ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_Bounds = { 0.00015 1e0 } ; 
 h_np = h0 ;   
 b_ini = stdc(x)*(n^(-1/5)) ;   
 m_hat = LocalLin(x,y,b_ini) ; 
 g_hat = LocalLin(x,y^2,b_ini) ; 
 v_hat = g_hat - (m_hat^2) ; 
 h_np[i,.] = v_hat[rows(v_hat),.] ; 
            /* h_unc[i,.] = stdc(data[i+1:i_ini+i,.])  ; */ /* unc. variance type I */ 
 h_unc[i,.] = data[214+i,.]^2  ;   /* unc. variance type II */  
 speh_np[i,.] = (h_unc[i,.] - h_np[i,.])^2 ; 
 vh_np[i,.] = v_hat ;  
 vyhat_np[i,.] = m_hat ;   
 
 bols = b0 ;     /* OLS Estimator */ 
 vyhat[i,.] = bols*y[n,.] ;     
 spe_ols[i,.] = (data[i+i_ini,.] - vyhat[i,.])^2 ; 
 
elseif case == 1 ;    
" @--------- ARCH ---------@ " ; 
 _cml_DirTol = 1e-2 ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_ParNames = "b0"|"ba0"|"ba1" ;  
 _cml_A = zeros(1,3) ;    /* _cml_A * p = _cml_B */ 
 _cml_B = 0 ;     /* (Equality Constraint) */ 
 _cml_C = zeros(1,2)~-ones(1,1) ;  /* _cml_C * p >= _cml_D */ 
 _cml_D = -1 ;      /* (Inquality Constraint) */  
 _cml_Bounds = { -1e0 1e0 , -1e0 1e0 , -1e0 1e0 } ; /* Parameter Boundaries */ 
 if i == 1 ; 
  h_a = h0 ;  
  ba0 = a[1,1]/10 ; 
  ba1 = a[2,1] ; 
  p_a = b0|ba0|ba1 ; 
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 else ; 
  load p_a ; 
 endif ; 
 if i /= n_obs - 1 - i_ini ; 
  {p_a, f_a, g_a, cov_a, rcode_a} = cml(y~x, 0, &arch, p_a) ; save p_a ; 
 else ; 
  {p_a, f_a, g_a, cov_a, rcode_a} = cmlPRT(cml(y~x, 0, &arch, p_a)) ; 
  "maximized function valued of ARCH : " ftos(f_a,"%#*.*lG",15,6); "" ; 
  "Variance-Covarianve Matrix of ARCH Parameters" ; 
  cov_a ; "" ;  
 endif ; 
 y_a = y./sqrt(h_a) ; x_a = x./sqrt(h_a) ; 
 beta_a = inv(x_a'x_a)*x_a'y_a ;   /* GLS estimator */ 
 yhat_a = y[n,.]*beta_a ; 
 vyhat_a[i,.] = yhat_a ; 
 spe_a[i,.] = (data[i+i_ini,.] - yhat_a)^2 ; 
 /* note :h_a[ig,.] = ba0 + ba1*(y[ig-1,.]-x[ig-1,.]*b0)^2 ; */ 
 h_a_hat = p_a[2,1] + p_a[3,1]*(y[n,1]-x[n,1]*p_a[1,1])^2 ;  
 vh_a[i,.] = h_a_hat ; 
 speh1_a[i,.] =  (h_np[i,.] - h_a_hat)^2 ; 
 speh2_a[i,.] =  (h_unc[i,.] - h_a_hat)^2 ; 
 
elseif case == 2 ;   
 " @--------- GARCH ---------@ " ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_ParNames = "b0"|"bg0"|"ag1"|"bg1" ;  
 _cml_A = zeros(1,4) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,2)~-ones(1,2) ; 
 _cml_D = -1 ; 
 _cml_Bounds = { -1e0 1e0 , -1e0 1.5e0 , -1e0 1e0 , -1e0 1e0 } ;  
 if i == 1 ; 
  h_g = h0 ;  
  bg0 = a[1,1]/100 ; 
  ag1 = a[2,1] ;  
  bg1 = bs/2 ;  
  p_g = b0|bg0|ag1|bg1 ; 
 else ; 
  load p_g ; 
 endif ; 
 if i /= n_obs - 1 - i_ini ; 
  {p_g, f_g, g_g, cov_g, rcode_g} = cml(y~x, 0, &garch, p_g) ; save p_g ; 
 else ; 
  {p_g, f_g, g_g, cov_g, rcode_g} = cmlPRT(cml(y~x, 0, &garch, p_g)) ; 
  "maximized function valued of GARCH : " ftos(f_g,"%#*.*lG",15,6);  "" ; 
  "Variance-Covarianve Matrix of GARCH Parameters" ; 
  cov_g ; "" ;  
 endif ; 
 y_g = y./sqrt(h_g) ; x_g = x./sqrt(h_g) ; 
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 beta_g = inv(x_g'x_g)*x_g'y_g ; 
 yhat_g = y[n,.]*beta_g ; 
 vyhat_g[i,.] = yhat_g ; 
 spe_g[i,.] = (data[i+i_ini,.] - yhat_g)^2 ; 
 /* note :h_g[ig,.] = bg0 + ag1*((y[ig-1,.] - x[ig-1,.]*b0)^2) + bg1*h_g[ig-1,.] ;*/ 
 h_g_hat = p_g[2,1] + p_g[3,1]*((y[n,.] - x[n,.]*p_g[1,1])^2) + p_g[4,1]*h_g[n,.] ; 
 vh_g[i,.] = h_g_hat ; 
 speh1_g[i,.] =  (h_np[i,.] - h_g_hat)^2 ; 
 speh2_g[i,.] =  (h_unc[i,.] - h_g_hat)^2 ; 
 
elseif case == 3 ;   
 " @--------- TGARCH ---------@ " ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_MaxIters = 2e+2 ; 
 _cml_ParNames = "b0"|"bt0"|"bt1"|"bt_n"|"bt2" ;  
 _cml_A = zeros(1,5) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,2)~-ones(1,3) ; 
 _cml_D = -1 ; 
 _cml_Bounds = { -1e0 1e0 , -.1e0 1e0 , 1e-10 1e0 , 0e0 1e0 , -1e0 1e0 } ;  
 if i == 1 ; 
  h_t = h0 ;  
  bt0 = a[1,1]/100 ;  
  bt1 = a[2,1] ; 
  bt_n = a[2,1]/10 ; 
  bt2 = bs/2 ; 
  p_t = b0|bt0|bt1|bt_n|bt2 ; 
 else ; 
  load p_t ; 
 endif ; 
 if i /= n_obs - 1 - i_ini ; 
  {p_t, f_t, g_t, cov_t, rcode_t} = cml(y~x, 0, &tgarch, p_t) ; save p_t ; 
 else ; 
  {p_t, f_t, g_t, cov_t, rcode_t} = cmlPRT(cml(y~x, 0, &tgarch, p_t)) ;  
  "maximized function valued of TGARCH : " ftos(f_t,"%#*.*lG",15,6);  "" ;  
  "Variance-Covarianve Matrix of TGARCH Parameters" ; 
  cov_t ; "" ;  
 endif ; 
 y_t = y./sqrt(h_t) ; x_t = x./sqrt(h_t) ; 
 beta_t = inv(x_t'x_t)*x_t'y_t ; 
 yhat_t = y[n,.]*beta_t ; 
 vyhat_t[i,.] = yhat_t ; 
 spe_t[i,.] = (data[i+i_ini,.] - yhat_t)^2 ; 
 /* note :if (y[ig-1,.]-x[ig-1,.]*b0) < 0 ; 
  h_t[ig,.] = bt0 + (bt1*(y[ig-1,.]-x[ig-1,.]*b0)^2)     
    +bt_n*((y[ig-1,.]-x[ig-1,.]*b0)^2)  + bt2*h_t[ig-1,.] ;    
 else ; 
  h_t[ig,.] = bt0 + (bt1*(y[ig-1,.]-x[ig-1,.]*b0)^2) + bt2*h_t[ig-1,.] ;    
 endif ; */ 
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 if (y[n,.]-x[n,.]*p_t[1,1]) < 0 ; 
  h_t_hat = p_t[2,1] + (p_t[3,1]*(y[n,.]-x[n,.]*p_t[1,1])^2)    
    + p_t[4,1]*((y[n,.]-x[n,.]*p_t[1,1])^2) + p_t[5,1]*h_t[n,.] ;  
  
 else ;  
  h_t_hat = p_t[2,1] + (p_t[3,1]*(y[n,.]-x[n,.]*p_t[1,1])^2) + p_t[5,1]*h_t[n,.] ; 
 endif ; 
 vh_t[i,.] = h_t_hat ; 
 speh1_t[i,.] =  (h_np[i,.] - h_t_hat)^2 ; 
 speh2_t[i,.] =  (h_unc[i,.] - h_t_hat)^2 ; 
 
elseif case == 4 ;   
 " @--------- I-GARCH ---------@ " ; 
 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_MaxIters = 4e+1 ; 
 _cml_ParNames = "b0"|"bi0"|"ai1"|"bi1" ;  
 _cml_A = zeros(1,2)~ones(1,2) ; 
 _cml_B = 1 ; 
 _cml_C = zeros(1,4) ; 
 _cml_D = 0 ; 
 _cml_Bounds = { -1e0 1e0 , -1e0 1e0 , -1e0 1e0 , -1e0 1e0 } ;  
 if i == 1 ; 
  h_i = h0 ; 
  bi0 = a[1,1]/100 ;  
  ai1 = a[2,1] ;   
  bi1 = 1 - ai1 ;     /* Restricted to Unt Root */ 
  p_i = b0|bi0|ai1|bi1 ; 
 else ; 
  load p_i ; 
 endif ;  
 if i /= n_obs - 1 - i_ini ; 
  {p_i, f_i, g_i, cov_i, rcode_i} = cml(y~x, 0, &igarch, p_i) ; save p_i ;  
 else ; 
  {p_i, f_i, g_i, cov_i, rcode_i} = cmlPRT(cml(y~x, 0, &igarch, p_i)) ;  
  "maximized function valued of I-GARCH : " ftos(f_i,"%#*.*lG",15,6);  "" ; 
  "Variance-Covarianve Matrix of I-GARCH Parameters" ; 
  cov_i ; "" ;  
 endif ; 
 y_i = y./sqrt(h_i) ; x_i = x./sqrt(h_i) ;  
 beta_i = inv(x_i'x_i)*x_i'y_i ;   
 yhat_i = y[n,.]*beta_i ;  
 vyhat_i[i,.] = yhat_i ; 
 spe_i[i,.] = (data[i+i_ini,.] - yhat_i)^2 ;  
 _cml_ParNames = "b0"|"bi0"|"ai1"|"bi1" ;  
 /* note :h_i[ig,.] = bi0 + ai1*(y[ig-1,.]-x[ig-1,.]*b0)^2 + bi1*h_i[ig-1,.] ; */ 
 h_i_hat = p_i[2,1] + p_i[3,1]*(y[n,.]-x[n,.]*p_i[1,1])^2 + p_i[4,1]*h_i[n,.] ;   
 vh_i[i,.] = h_i_hat ; 
 speh1_i[i,.] =  (h_np[i,.] - h_i_hat)^2 ; 
 speh2_i[i,.] =  (h_unc[i,.] - h_i_hat)^2 ; 
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elseif case == 5 ;  
 " @--------- EGARCH ---------@ " ; 
 _cml_Algorithm = 4 ; 
 _cml_LineSearch = 1 ; 
 _cml_MaxIters = 4e+2 ; 
 _cml_ParNames = "b0"|"be0"|"be1"|"be2"|"be3" ;  
 _cml_A = zeros(1,5) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,5) ; 
 _cml_D = 0 ;  
 _cml_Bounds = { -10e0 10e0 , -15e0 15e0 , -10e0 10e0 , -10e0 10e0, -10e0 10e0 } ;  
 if i == 1 ; 
  ln_h_e = h0 ; 
  be0 = -a[1,1]*10 ;  
  be1 = a[2,1]*2 ;   
  be2 = a[2,1] ;   
  be3 = -a[2,1]/30 ;   
  p_e = b0|be0|.001|be2|.001 ; 
 else ; 
  load p_e ; 
 endif ; 
 if i /= n_obs - 1 - i_ini ; 
  {p_e, f_e, g_e, cov_e, rcode_e} = cml(y~x, 0, &egarch, p_e) ;  
  "Variance-Covarianve Matrix of EGARCH Parameters" ; 
  cov_e ; "" ; save p_e ;  
 else ; 
  {p_e, f_e, g_e, cov_e, rcode_e} = cmlPRT(cml(y~x, 0, &egarch, p_e)) ;  
  "maximized function valued of EGARCH : " ftos(f_e,"%#*.*lG",15,6);  "" ; 
  "Variance-Covarianve Matrix of EGARCH Parameters" ; 
  cov_e ; "" ;  
 endif ; 
 y_e = y./sqrt(exp(ln_h_e)) ; x_e = x./sqrt(exp(ln_h_e)) ;  
 beta_e = inv(x_e'x_e)*x_e'y_e ;   
 yhat_e = y[n,.]*beta_e ;  
 vyhat_e[i,.] = yhat_e ; 
 spe_e[i,.] = (data[i+i_ini,.] - yhat_e)^2 ;  
 _cml_ParNames = "b0"|"be0"|"be1"|"be2"|"be3" ;  
 /* note :ln_h_e[ig,.] = be0 + be1*ln_h_e[ig-1,.]    

+ be2*abs( (y[ig-1,.]-x[ig-1,.]*b0) / sqrt(exp(ln_h_e[ig-1,.])) )  
    + be3*(y[ig-1,.]-x[ig-1,.]*b0)/sqrt(exp(ln_h_e[ig-1,.]))  ;  */ 
 lnhe_hat = p_e[2,1] + p_e[3,1]*ln_h_e[n,.]  
    +p_e[4,1]*abs( (y[n,.]-x[n,.]*p_e[1,1])/ sqrt(exp(ln_h_e[n,.])) )  
    + p_e[5,1]*(y[n,.]-x[n,.]*p_e[1,1])/sqrt(exp(ln_h_e[n,.]))  ;  
 vh_e[i,.] = exp(lnhe_hat) ; 
 speh1_e[i,.] =  (h_np[i,.] - exp(lnhe_hat))^2 ; 
 speh2_e[i,.] =  (h_unc[i,.] - exp(lnhe_hat))^2 ; 
 
elseif case == 6 ;   
 " @--------- ARCH-M ---------@ " ; i ; 
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 _cml_Algorithm = 3 ; 
 _cml_LineSearch = 1 ; 
 _cml_ParNames = "b0"|"bh"|"bm0"|"am1" ;  
 _cml_A = zeros(1,4) ; 
 _cml_B = 0 ; 
 _cml_C = zeros(1,4) ; 
 _cml_D = 0 ; 
 _cml_Bounds = { -1.5e0 1.5e0 , -5e0 5e0 ,-1e0 1e0 , -1e0 1e0 } ;  
 if i == 1 ; 
  h_m = h0 ;  
  bh = bs*1.2 ; 
  bh = -bs ; 
  bm0 = a[1,1]/10 ; 
  am1 = a[2,1] ;  
  p_m = b0|bh|bm0|am1 ; 
 else ; 
  load p_m ;    
 endif ; 
 if i /= n_obs - 1 - i_ini ; 
  {p_m, f_m, g_m, cov_m, rcode_m} = cml(y~x, 0, &archm, p_m) ; save p_m ; 
 else ; 
  {p_m, f_m, g_m, cov_m, rcode_m} = cmlPRT(cml(y~x, 0, &archm, p_m)) ; 
  "maximized function valued of ARCH-M : " ftos(f_m,"%#*.*lG",15,6);  "" ; 
  "Variance-Covarianve Matrix of ARCH-M Parameters" ; 
  cov_m ; "" ;  
 endif ; 
 yhat_m = (y[n,.]~h_m[n,.])*p_m[1:2,.] ; 
 vyhat_m[i,.] = yhat_m ; 
 spe_m[i,.] = (data[i+i_ini,.] - yhat_m)^2 ; 
 /* note :h_m[ig,.] = bm0 + am1*( (y[ig-1,.] - x[ig-1,.]*b0 - h_m[ig-1,.]*bh)^2 )  ;*/ 

h_m_hat = p_m[3,1] + p_m[4,1]*( (y[n,.] - x[n,.]*p_m[1,1] - h_m[n,.]*p_m[2,1])^2 )  ; 
 vh_m[i,.] = h_m_hat ; 
 speh1_m[i,.] =  (h_np[i,.] - h_m_hat)^2 ; 
 speh2_m[i,.] =  (h_unc[i,.] - h_m_hat)^2 ; 
endif ; 
 
i = i + 1 ; endo ; 
case = case + 1 ; endo ; 
 
output on ; 
 
i = i - 1 ;      /* back to last round of iteration */ 
 
tfini = timestr(0) ; dfini = date ;   
"" ; "" ; "start at   " tstrt ; dstrt[1:3,.]' ; 
"" ; "" ; "finish at   " tfini ; dfini[1:3,.]' ; 
 
graphset ; 
_pdate = "" ; 
_pcolor = {0,1,4,4} ; 
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_pmcolor = zeros(8,1)|15 ; 
_pcolor = {0,1} ; 
_pltype = {6,1} ; 
_plegctl = { 2 4 1 1 } ; 
 
/*...............................................................................................................*/ 
/* Nonparametric */ 
_ptek = "npV-Y_1.tkf" ; 
xlabel ("Y-1") ; ylabel ("V(Y-1)") ; 
m = data[i_ini-1:i_ini+i-2,.]~vh_np ; 
m = sortc(m,1) ; 
xy(m[.,1],m[.,2]) ;  
_ptek = "npVY2-T.tkf" ; 
xlabel ("T") ; ylabel ("V(Y-1),Y^2") ; 
_plegstr = "Estimated Volatility\000(Actual Return)^2" ; 
xy( seqa(0,1,n_obs- i_ini) ,vh_np~data[i_ini+1:i_ini+i,.] ) ;   
 
/* ARCH */ 
_ptek = "aV-Y_1.tkf" ; 
xlabel ("Y-1") ; ylabel ("V(Y-1)") ; 
m = data[i_ini-1:i_ini+i-2,.]~vh_a  ; 
m = sortc(m,1) ; 
xy(m[.,1],m[.,2]) ;  
_ptek = "aVY2-T.tkf" ; 
xlabel ("T") ; ylabel ("V(Y-1),Y^2") ; 
_plegstr = "Estimated Volatility\000(Actual Return)^2" ; 
xy( seqa(0,1,n_obs- i_ini) ,vh_a ~data[i_ini+1:i_ini+i,.] ) ;   
 
/* GARCH */ 
_ptek = "gV-Y_1.tkf" ; 
xlabel ("Y-1") ; ylabel ("V(Y-1)") ; 
m = data[i_ini-1:i_ini+i-2,.]~vh_g  ; 
m = sortc(m,1) ; 
xy(m[.,1],m[.,2]) ;  
_ptek = "gVY2-T.tkf" ; 
xlabel ("T") ; ylabel ("V(Y-1),Y^2") ; 
_plegstr = "Estimated Volatility\000(Actual Return)^2" ; 
xy( seqa(0,1,n_obs- i_ini) ,vh_g ~data[i_ini+1:i_ini+i,.] ) ;   
 
/* TGARCH */ 
_ptek = "tV-Y_1.tkf" ; 
xlabel ("Y-1") ; ylabel ("V(Y-1)") ; 
m = data[i_ini-1:i_ini+i-2,.]~vh_t  ; 
m = sortc(m,1) ; 
xy(m[.,1],m[.,2]) ;  
_ptek = "tVY2-T.tkf" ; 
xlabel ("T") ; ylabel ("V(Y-1),Y^2") ; 
_plegstr = "Estimated Volatility\000(Actual Return)^2" ; 
xy( seqa(0,1,n_obs- i_ini) ,vh_t ~data[i_ini+1:i_ini+i,.] ) ;   
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/* EGARCH */ 
_ptek = "eV-Y_1.tkf" ; 
xlabel ("Y-1") ; ylabel ("V(Y-1)") ; 
m = data[i_ini-1:i_ini+i-2,.]~vh_e ; 
m = sortc(m,1) ; 
xy(m[.,1],m[.,2]) ;  
_ptek = "eVY2-T.tkf" ; 
xlabel ("T") ; ylabel ("V(Y-1),Y^2") ; 
_plegstr = "Estimated Volatility\000(Actual Return)^2" ; 
xy( seqa(0,1,n_obs- i_ini) ,vh_e~data[i_ini+1:i_ini+i,.] ) ;   
 
/* I-GARCH */ 
_ptek = "iV-Y_1.tkf" ; 
xlabel ("Y-1") ; ylabel ("V(Y-1)") ; 
m = data[i_ini-1:i_ini+i-2,.]~vh_i  ; 
m = sortc(m,1) ; 
xy(m[.,1],m[.,2]) ;  
_ptek = "iVY2-T.tkf" ; 
xlabel ("T") ; ylabel ("V(Y-1),Y^2") ; 
_plegstr = "Estimated Volatility\000(Actual Return)^2" ; 
xy( seqa(0,1,n_obs- i_ini) ,vh_i~data[i_ini+1:i_ini+i,.] ) ;   
 
/* ARCH-M */ 
_ptek = "mV-Y_1.tkf" ; 
xlabel ("Y-1") ; ylabel ("V(Y-1)") ; 
m = data[i_ini-1:i_ini+i-2,.]~vh_m  ; 
m = sortc(m,1) ; 
xy(m[.,1],m[.,2]) ;  
_ptek = "mVY2-T.tkf" ; 
xlabel ("T") ; ylabel ("V(Y-1),Y^2") ; 
_plegstr = "Estimated Volatility\000(Actual Return)^2" ; 
xy( seqa(0,1,n_obs- i_ini) ,vh_m~data[i_ini+1:i_ini+i,.] ) ;   
 
let _ptype[1,1] = 6 ; 
xlabel ("T") ; ylabel ("Y") ; 
"<<<<<<<<<<<<<<<<            >>>>>>>>>>>>>>>>" ; 
""; ""; 
"MSPE of Nonparametric =  " meanc(spe_np) ; "" ; 
"MSPE b/w nonparametric's and unconditional variance =  " meanc(speh_np) ; 
_ptek = "NP.tkf" ; 
xy( seqa(0,1,n_obs- i_ini) ,vyhat_np~data[i_ini+1:i_ini+i,.] ) ;   
 
"MSPE of OLS =  " meanc(spe_ols) ; "" ; 
sse = u'u/(n-1); 
cov_ols = inv(x'x)*sse; 
stat(bols, cov_ols) ; "" ; 
_ptek = "OLS.tkf" ; 
xy( seqa(0,1,n_obs- i_ini) ,vyhat~data[i_ini+1:i_ini+i,.] ) ;   
 
" @--------- ARCH ---------@ " ; 
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_cml_ParNames = "b0"|"ba0"|"ba1" ;  
{p_a, f_a, g_a, cov_a, rcode_a} = cmlPRT(p_a, f_a, g_a, cov_a, rcode_a) ; 
"maximized function valued of ARCH : " f_a ; "" ; 
stat(p_a, cov_a)  "" ; 
"MSPE of ARCH =  " meanc(spe_a) ; "" ; 
"MSPE b/w ARCH's and nonparametric's variance =  " meanc(speh1_a) ; 
"MSPE b/w ARCH's  and unconditional variance =  " meanc(speh2_a) ; 
"" ; 
_ptek = "ARCH.tkf" ; 
xy( seqa(0,1,n_obs - i_ini) ,vyhat_a~data[i_ini+1:i_ini+i,.] ) ;   
 
" @--------- GARCH ---------@ " ; 
_cml_ParNames = "b0"|"bg0"|"ag1"|"bg1" ;  
{p_g, f_g, g_g, cov_g, rcode_g} = cmlPRT(p_g, f_g, g_g, cov_g, rcode_g) ; 
stat(p_g, cov_g) ; "" ; 
"maximized function valued of GARCH : " f_g ; "" ; 
"MSPE of GARCH =  " meanc(real(spe_g)) ; "" ; 
"MSPE b/w GARCH's and nonparametric's variance =  " meanc(speh1_g) ; 
"MSPE b/w GARCH's  and unconditional variance =  " meanc(speh2_g) ; 
"" ; 
_ptek = "GARCH.tkf" ; 
xy( seqa(0,1,n_obs - i_ini) ,vyhat_g~data[i_ini+1:i_ini+i,.] ) ;   
 
" @--------- TGARCH ---------@ " ; 
_cml_ParNames = "b0"|"bt0"|"bt1"|"bt_n"|"bt2" ;  
{p_t, f_t, g_t, cov_t, rcode_t} = cmlPRT(p_t, f_t, g_t, cov_t, rcode_t) ; 
"maximized function valued of TGARCH : " f_t ; "" ; 
stat(p_t, cov_t) ; "" ; 
"MSPE of TGARCH =  " meanc(real(spe_t)) ; "" ; 
"MSPE b/w TGARCH's and nonparametric's variance =  " meanc(real(speh1_t)) ; 
"MSPE b/w TGARCH's  and unconditional variance =  " meanc(real(speh2_t)) ; 
"" ; 
_ptek = "TGARCH.tkf" ; 
xy( seqa(0,1,n_obs - i_ini) ,vyhat_t~data[i_ini+1:i_ini+i,.] ) ;   
 
" @--------- I-GARCH ---------@ " ; 
_cml_ParNames = "b0"|"bi0"|"ai1"|"bi1" ;  
{p_i, f_i, g_i, cov_i, rcode_i} = cmlPRT(p_i, f_i, g_i, cov_i, rcode_i) ; 
"maximized function valued of I-GARCH : " f_i ; "" ; 
stat(p_i, cov_i) ; "" ; 
"MSPE of I-GARCH =  " meanc(spe_i) ; "" ; 
"MSPE b/w I-GARCH's and nonparametric's variance =  " meanc(real(speh1_i)) ; 
"MSPE b/w I-GARCH's  and unconditional variance =  " meanc(real(speh2_i)) ; 
"" ; 
_ptek = "I-GARCH.tkf" ; 
xy( seqa(0,1,n_obs - i_ini) ,vyhat_i~data[i_ini+1:i_ini+i,.] ) ;   
 
" @--------- EGARCH ---------@ " ; 
_cml_ParNames = "b0"|"be0"|"be1"|"be2"|"be3" ;  
{p_e, f_e, g_e, cov_e, rcode_e} = cmlPRT(p_e, f_e, g_e, cov_e, rcode_e) ; 
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"maximized function valued of EGARCH : " f_e ; "" ; 
stat(p_e, real(cov_e)) ; "" ; 
"MSPE of EGARCH =  " meanc(spe_e) ; "" ; 
"MSPE b/w EGARCH's and nonparametric's variance =  " meanc(real(speh1_e)) ; 
"MSPE b/w EGARCH's  and unconditional variance =  " meanc(real(speh2_e)) ; 
"" ; 
_ptek = "EGARCH.tkf" ; 
xy( seqa(0,1,n_obs - i_ini) ,vyhat_e~data[i_ini+1:i_ini+i,.] ) ;   
 
" @--------- ARCH-M ---------@ " ; 
_cml_ParNames = "b0"|"b0-h"|"bm0"|"am1" ;  
{p_m, f_m, g_m, cov_m, rcode_m} = cmlPRT(p_m, f_m, g_m, cov_m, rcode_m) ; 
"maximized function valued of ARCH-M : " f_m ; "" ; 
stat(p_m, real(cov_m)) ; "" ; 
"MSPE of ARCH-M =  " meanc(spe_m) ; "" ; 
"MSPE b/w ARCH-M's and nonparametric's variance =  " meanc(speh1_m) ; 
"MSPE b/w ARCH-M's  and unconditional variance =  " meanc(speh2_m) ; 
"" ; 
_ptek = "ARCH-M.tkf" ; 
xy( seqa(0,1,n_obs - i_ini) ,vyhat_m~data[i_ini+1:i_ini+i,.] ) ;   
 
 
 
proc(1) = LocalLin(x,y,b_ini) ; 
local b, f, g, cov, retcode, kernel, m_hat, i, xx, xk, xi, beta ; 
 {b, f, g, cov, retcode}= cml(y~x, 0, &cvll, b_ini) ;   
 kernel = zeros(n,1) ; 
 xi = y[rows(y),.]*ones(n,1) ; 
 kernel = (1/sqrt(2*pi))*exp(-0.5* ((x - xi)/b)^2 ); 
 xx = ones(n,1)~(x-xi) ; 
 xk = xx.*kernel ; 
 beta = inv(xk'xx)*xk'y ; 
 m_hat  = beta[1,.] ; 
retp(m_hat) ; 
endp ; 
 
proc(1) = cvll(th,z) ; 
local b, i, xi, sr, r, kernel, xx, xk, beta ; 
b = th[1,1] ; y = z[.,1] ; x = z[.,2:cols(z)] ; 
sr = zeros(n,1) ; 
i = 1 ; do while i <= n ; 
 xi = x[i,.]*ones(n,1) ;   
 kernel = (1/sqrt(2*pi))*exp(-0.5* ((x - xi)/b)^2 ) ; 
 kernel[i,.] = 0 ; 
 xx = ones(n,1)~(x-xi) ;        
 xk = xx.*kernel ; 
            beta = inv(xk'xx)*xk'y ;  
 sr[i,.] = ( y[i,.]-beta[1,.] )^2; 
i = i + 1 ; endo; 
retp(-meanc(sr)) ; 
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endp ; 
 
proc(1) = arch(th,z) ; 
local ig ; 
b0 = th[1:cols(x),1] ;  
ba0 = th[cols(x)+1,1] ;  
ba1 = th[cols(x)+2,1] ;    
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_a[ig,.] = ba0/(1-ba1) ;  
 else ; 
  h_a[ig,.] = ba0 + ba1*(y[ig-1,.]-x[ig-1,.]*b0)^2 ;   
 endif ; 
 l[ig,.] = - 0.5*ln(2*pi*h_a[ig,.]) - 0.5*( (y[ig,.] - x[ig,.]*b0) ^2 )/h_a[ig,.] ;  
ig = ig + 1 ; endo ; 
retp(sumc(l)) ;   
endp ; 
 
proc(1) = garch(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ;  
bg0 = th[cols(x)+1,1] ;  
ag1 = th[cols(x)+2,1] ;  
bg1 = th[cols(x)+3,1] ;  
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_g[ig,.] = bg0/(1-bg1-ag1)  ;    
 else ; 
  h_g[ig,.] = bg0 + ag1*((y[ig-1,.] - x[ig-1,.]*b0)^2) + bg1*h_g[ig-1,.] ;   
 endif ; 
 l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(h_g[ig,.]) - 0.5*( (y[ig,.] - x[ig,.]*b0)^2 )/h_g[ig,.] ; 
ig = ig + 1 ; endo ; 
retp(sumc(l)) ; 
endp ; 
 
proc(1) = tgarch(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ; 
bt0 = th[cols(x)+1,1] ;  
bt1 = th[cols(x)+2,1] ;  
bt_n = th[cols(x)+3,1] ;  
bt2 = th[cols(x)+4,1] ; 
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_t[ig,.] = bt0 / (1-bt1-bt_n-bt2) ;    
 else ; 
  if (y[ig-1,.]-x[ig-1,.]*b0) < 0 ; 
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  h_t[ig,.] = bt0 + (bt1*(y[ig-1,.]-x[ig-1,.]*b0)^2)  
    +bt_n*((y[ig-1,.]-x[ig-1,.]*b0)^2)  + bt2*h_t[ig-1,.] ;    
  else ; 
  h_t[ig,.] = bt0 + (bt1*(y[ig-1,.]-x[ig-1,.]*b0)^2) + bt2*h_t[ig-1,.] ;    
  endif ; 
 endif ; 
 l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(h_t[ig,.]) - 0.5*( (y[ig,.] - x[ig,.]*b0)^2 )/h_t[ig,.] ; 
ig = ig + 1 ; endo ; 
retp(sumc(l)) ; 
endp ; 
 
proc(1) = igarch(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ;  
bi0 = th[cols(x)+1,1] ;  
ai1 = th[cols(x)+2,1] ;  
bi1 = th[cols(x)+3,1] ;  
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_i[ig,.] = bi0 + ai1*e0_2 + bi1*h0_2  ; 
 else ; 
  h_i[ig,.] = bi0 + ai1*(y[ig-1,.]-x[ig-1,.]*b0)^2 + bi1*h_i[ig-1,.] ;   
 endif ; 
 l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(h_i[ig,.]) - 0.5*( (y[ig,.] - x[ig,.]*b0)^2 )/h_i[ig,.] ; 
ig = ig + 1 ; endo ; 
 
retp(sumc(l)) ; 
endp ;  
 
proc(1) = egarch(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ;  
be0 = th[cols(x)+1,1] ;  
be1 = th[cols(x)+2,1] ;  
be2 = th[cols(x)+3,1] ;  
be3 = th[cols(x)+4,1] ;  
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  ln_h_e[ig,.] = be0 / (1 - be1 - be2 - be3)  ;  
 else ; 
  ln_h_e[ig,.] = be0 + be1*ln_h_e[ig-1,.]  
   + be2*abs((y[ig-1,.]-x[ig-1,.]*b0)/sqrt(exp(ln_h_e[ig-1,.])))  
   + be3*(y[ig-1,.]-x[ig-1,.]*b0)/sqrt(exp(ln_h_e[ig-1,.]))  ;  
  endif ; 
 l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(exp(ln_h_e[ig,.]))  
  - 0.5*( (y[ig,.] - x[ig,.]*b0)^2 )/(exp(ln_h_e[ig,.])) ;  
ig = ig + 1 ; endo ; 
retp(sumc(l)) ; 
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endp ;  
 
proc(1) = archm(th,z) ; 
local ig ;  
b0 = th[1:cols(x),1] ;  
bh = th[cols(x)+1,1] ;  
bm0 = th[cols(x)+2,1] ;  
am1 = th[cols(x)+3,1] ;  
y = z[.,1] ; x = z[.,2:cols(z)] ; 
ig = 1 ; do while ig <= n ; 
 if ig == 1 ; 
  h_m[ig,.] = bm0/(1-am1)  ;    
 else ; 
  h_m[ig,.] = bm0 + am1*( (y[ig-1,.]-x[ig-1,.]*b0  
    - h_m[ig-1,.]*bh)^2 )  ;   
 endif ; 
 l[ig,.] = - 0.5*ln(2*pi) - 0.5*ln(h_m[ig,.])  

- 0.5*((y[ig,.]-x[ig,.]*b0-h_m[ig,.]*bh)^2)/h_m[ig,.] ; 
ig = ig + 1 ; endo ; 
retp(sumc(l)) ; 
endp ; 
 
proc(1) = stat(bp,varcov) ; 
local sd, k, tstat, p ; 
 sd = real(sqrt(diag(varcov))); k = rows(sd) ; 
 tstat = bp./sd; 
 p = cdftc(tstat,n-k) ; 
 " beta-hat   sd      t-stat      p-value " ; 
 bp~sd~tstat~p ; "" ; 
 "Variance-Covarianve Matrix" ; 
retp(varcov) ; 
endp ; 
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