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Abstract

We propose an incomplete information game, in which rational players depend

on finite belief hierarchies in determining their optimal actions. This is done by

introducing costs when players climb up their belief hierarchies. With bounded

payoffs, players climb up to a finite order of belief, and just depend on these

beliefs in making their decisions. The model is consistent with an experimental

literature which shows that people play games with finite belief hierarchies, while

it can avoid the problem of misspecification of high order beliefs, which may limit

predictive power of some theories.

1 Introduction

A recent experimental literature, see for example Stahl and Wilson [12], and Nagel [8],

shows that in playing games people depend on finite belief hierarchies in determining

their actions. This is used as a reason to explain the poor prediction of game theory in

many experimental settings. Sakovics [11] uses this literature to support his bounded

rationality model. According to Sakovics [11], each player forms a finite belief hierarchy,

and the optimal decision, then, is made according to this hierarchy.

Some drawbacks occur to models similar to Sakovics’ [11]. Firstly, the model has to

assume a common finite order of beliefs that every player would form up to. Secondly,

without any reason every player thinks that his opponents form beliefs one order shorter
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than he does. At last, the model faces a big inconsistency that for the decision on his

action each player chooses it optimally, while for the decision to stop forming beliefs he

does it without reason.

Here, we propose an incomplete information model, in which rational players choose

their optimal actions, relying on just finite belief hierarchies. This is done by introducing

costs of using high order beliefs in making optimal decisions. These costs occur because

players have to consider additional possible states of the world, while they are more

uncertain about beliefs that they use. Hence, they are reluctant to use high order

beliefs. With increasing costs and bounded payoffs, it is optimal for players to stop

using high order beliefs at a finite order. Then, they use these finite belief hierarchies

to determine their optimal actions.

The model has some advantages over bounded rationality models, which have similar

features to Sakovics’ [11]. There is no inconsistency occurs, because players make every

decision optimally. The model allows each player to stop processing his high order

beliefs at different order. Also, in equilibrium each player has consistent belief over

the stopping points of his opponents. Section 2 provides specification of this model.

Section 3 characterizes equilibria in this model. Section 4 gives some simple examples.

Section 5 discusses some advantages of this model over standard Bayesian games,

apart from the reason that it is consistent with experimental studies. With finite belief

hierarchies, we can get rid off the problem of infinite number of types, resulted from

infinite belief hierarchies in general Bayesian games. We can also avoid the extreme as-

sumption of common prior or common knowledge of infinite belief hierarchies implicitly

assumed in Bayesian games with finite types of each player. At last, we can avoid the

problem related to the impact of high order beliefs, which requires theorists to specify

correctly the whole infinite belief hierarchies. Section 6 concludes the paper.
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2 Specification of the Model

2.1 Type space and type notations

In an incomplete information model, some payoff-relevant information is missing. Since

the missing information can affect players’ payoff, it is in each player’s interest to

form his belief over this missing information. We call it first-order belief. Since the

outcome of the model is also affected by the decisions of other players in the model,

each wants to form beliefs on what others will do. Since each player knows that others

choose their decisions based on their first-order beliefs, each wants to form a belief over

these first-order beliefs. This is his second-order belief. Then, each player knows that

others also base their decisions on the second-order beliefs, he wants to form belief over

these second-order beliefs. The same argument continues for other high-order beliefs,

resulting in an infinite belief hierarchy.

In this paper, we will restrict our attention to a world with only two players1. We

start by constructing a type space for our model. We have some missing information,

and a common space S contains all possible values of this missing information. Assume

that it contains only finite different objects. This means that each player knows that

there can be only finite possible alternative values for this missing information. We

denote the space of probability measure on the σ-field of a metric space Z as ∆Z.

Then, define recursively:

1The expansion of the model to the case of more than 2 players is rather straightforward.
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X0 = S (1)

X1 = X0 ×∆X0

X2 = X1 ×∆X1

...

Xl = Xl−1 ×∆Xl−1

...

Let δi
l denote the probability measure that player i assigns on the set Xl−1, for l ≥ 1.

That is δi
l ∈ ∆Xl−1. Hence, δi

1, which is the belief that i assigns over the space S, is

the first-order belief of player i. Next, δi
2 is a way to model second-order belief. We

can think of X1 as the set that contains all possible combinations between the missing

information, which is the X0 part of the set, and the possible first-order beliefs of player

j, which is represented by the ∆X0 part of the set. Marginal probability of δi
2 over the

set ∆X0 tells us the belief that player i assigns over the possible values of the first-order

belief of player j. This way of modeling second-order belief is more general and, hence,

widely applied, since it can deal with the case of dependent beliefs over different orders.

δi
l is then a way to model the l-th-order belief. We assume that each player i assigns

positive probability to only finite possible cases in each order of belief, and this is a

common knowledge in the model. This means that both players know that there are

only finite possible values for each δi
l , for l ≥ 1.

A type ti of a player i is an infinite belief hierarchy ti = (δi
1, δ

i
2, δ

i
3, ...) ∈ ×∞

l=0∆Xl.

Actually, ti is exactly the same belief hierarchy as in the standard Bayesian models,

when each order of belief is assumed to be finite. We assume that there is no duplicating

belief hierarchy. Hence, a belief hierarchy ti will have at least one value of δi
l , for l ≥ 1,
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different from ones of other hierarchies. With different belief structures, a player may

choose different decisions. This is the reason that in the standard Bayesian models we

have to find a decision for each type ti of a player i to define the equilibrium outcomes.

To make the model closed, we impose the conditions of “coherency” and “common

knowledge of coherency”, as defined in Brandenburger and Dekel [2], into our belief

system. Let the set T i′ collects all relevant ti’s. Brandenburger and Dekel [2] show that

with the “coherency” and “common knowledge of coherency” conditions, there exists

a homeomorphism g : T i′ → ∆(S × T j′). We can think of g as a function associates

each ti with a unique probability measure on the space (S × T j′). That is g(ti) is a

joint probability measure over the set of all possible values of the missing information,

S, and the infinite belief hierarchies of player j, T j′. In other words, a type ti of player

i forms a unique belief on the possible values of missing information and the infinite

belief hierarchies of player j. Then the decision of type ti of player i is based on this

belief. The space Ω = (S×T i′×T j′) is the universal state space (or universal BL-space

in Mertens and Zamir [5]).

It is common in standard Bayesian models that, if (s, ti, tj) ∈ (S × T i′ × T j′) is a

true state, then:

(s, tj) ∈ supp[g(ti)], i 6= j, (2)

where the operator “supp[.]” refers to the support of the probability measure in the

bracket. Condition (2) says that a type ti of player i must give positive probability to

the event that (s, tj) occurs. In other words, each player never excludes the true state

from the set of states he considers as possible. To make sure that the condition (2) is

met, we will work on a subspace of the previous universal state space, which is:

(S×T i×T j) =
{
(s, ti, tj) ∈ (S × T i′ × T j′)|(s, tj) ∈ supp[g(ti)],∀ti, tj, and i 6= j

}
(3)
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This is a common knowledge in the model. Then, from now on the space (S×T i×T j)

in (3) is our state space. A state of the world from this set is denoted by (s, ti, tj) ∈

(S × T i × T j).

It is convenient to have a type notation which also tells us the finite belief hierarchy

equipped with it. Denote timi as a “type ti ∈ T i with beliefs just up to his mi-th order”.

That is timi = (δi
1, δ

i
2, ..., δ

i
mi) = ×mi−1

l=0 proj∆Xl
ti, where the operator “projZz” means

projection of an element z on the set Z. Let the set T i
mi collect all relevant values of

timi . Then we define the set of timi′ associated with timi , when mi′ ≥ mi as:

Υi
mi′(timi) =

{
timi′ ∈ T i

mi′

∣∣∀l ≤ mi − 1, proj∆Xl
timi′ = proj∆Xl

timi

}
. (4)

The set Υi
mi′(timi) in (4) collects all possible types timi′ ’s that share the same first mi

components with timi .

Define mi as the highest order of belief that all types ti’s of a player i would form

up to. It turns out that each type ti
mi ∈ T i

mi is important in defining equilibrium in our

model2. Before proceeding further, define (ti
mi , mi) ∈ T i

mi ×N as a “type ti
mi who forms

up to his mi -th-order belief”. Note that (ti
mi , mi) has exactly the same belief structure

as timi , if ti
mi ∈ Υi

mi(timi). Hence, this (ti
mi , mi) would make the same decisions as its

associated timi . Note also that Υi
mi′(timi , mi) = Υi

mi′(timi).

2.2 Equilibrium conditions and other specifications

Let Ai be a set of all possible actions, ai, for player i. Define φi : T i
mi × N → Ai as

a strategy function of player i. Let Φi collect all possible strategy functions φi. Then

define µi : T i
mi → N as a belief formation function. µi(ti

mi) tells us the highest order of

belief that a type ti
mi would process up to. The set M i collects all possible functions

µi. We can define equilibrium decisions of each player i, in the spirit of Bayesian-Nash

2We will discuss about this in proposition 1 in section 3 below.
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equilibrium, as a pair (φi∗, µi∗), in which:

• Each type ti
mi has a correct belief on the pair (φj∗, µj∗).

• φi∗(ti
mi , mi) is the optimal action of a type ti

mi , ∀timi ∈ T i
mi and ∀mi ≤ mi, given

(φj∗, µj∗).

• µi∗(ti
mi) is the optimal belief formation of a type ti

mi , for all ti
mi ∈ T i

mi , given φi∗

and (φj∗, µj∗).

• mi is the maximum value of µi∗(ti
mi), ∀i, when comparing across all ti

mi ∈ T i
mi .

The first condition above is an equilibrium condition. The optimal conditions for

the second and the third statements need some discussions, and, hence, will be specified

below. The equilibrium outcome of the model is:

(
φi∗(timi , µi∗(timi)), φj∗(tj

mj , µ
j∗(tj

mj))
)
,∀timi , t

j

mj (5)

We can look at this equilibrium outcome as optimal decisions of every type (ti
mi , µi∗(ti

mi)).

Each ti
mi has his optimal decision in processing his beliefs µi∗(ti

mi). Then, he decides

on his optimal action according to φi∗(ti
mi , µi∗(ti

mi)).

Now we look at optimal condition for φi∗(ti
mi , mi). Given the value of mj, a type

(ti
mi , mi) knows that the relevant beliefs for him are just ones up to his (mj +1)-th-order

belief. This is because he knows that each relevant type tj
mj would form his beliefs up to

at most the mj-th order before making his decision, and the (mj + 1)-th-order belief of

(ti
mi , mi) can capture his belief over tj

mj ’s mj-th-order belief already. Hence, it is enough

to base his own decision with his (mj+1)-th-order belief. If mi ≥ mj+1, a type (ti
mi , mi)

already has his unique subjective probability distribution over Xmj = S × T j

mj , which

is his δi
mj+1

=proj∆X
mj

timi . However, for a type (ti
mi , mi) with mi < mj + 1, he does
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not. For such a type, he must form an alternative guess of probability distribution over

S × T j

mj .

There is a common set of beliefs that all players rely on when they do not want to

process their own subjective beliefs. We can think of this belief as a fairly reliable and

easy to process one. One alternative candidate is the uniform probability distribution.

However, here we calculate the altermative belief from the structure of the type space

of the model. The case of players using uniform probability distribution as their alter-

native belief can also be formed by appropriate specification of the type space3. Denote

di
mi+1(t

i
mi , mi) to be the alternative guess of a type (ti

mi , mi) for probability distribution

over S × T j
mi , when he does not want to process his own (mj + 1)-th-order belief. It

can be expressed as:

di
mi+1(t

i
mi , mi) =

∑
ti
mi+1

∈Υi
mi+1

(ti
mi ,m

i)

1

|Υi
mi+1

(ti
mi , mi)|

· proj∆Xmi
timi+1, (6)

where |Z| denotes the number of elements in the set Z. The formula in (6) allows us

to form the alternative belief of the next consecutive order. However, in many cases

players want to form beliefs of the higher order. Apply the same formula to each type

ti
mi+1

∈ Υi
mi+1(t

i
mi , mi), we can define recursively:

di
mi+l(t

i
mi , mi) =

∑
ti
mi+1

∈Υi
mi+1

(ti
mi ,m

i)

1

|Υi
mi+1

(ti
mi , mi)|

· di
mi+l(t

i
mi+1). (7)

Hence, using (7) with (6), for example, the value of alternative belief di
mi+2(t

i
mi , mi) is∑

ti
mi+1

∈Υi
mi+1

(ti
mi ,m

i)

1
|Υi

mi+1
(ti

mi ,m
i)|

 ∑
ti
mi+2

∈Υi
mi+2

(ti
mi+1

)

1
|Υi

mi+2
(ti

mi+1
)| · proj∆Xmi+1

timi+2

. For

a type (ti
mi , mi) with mi < mj +1, his alternative guess of probability distribution over

S × T j

mj , then, is di
mj+1

(ti
mi , mi).

3See, for example, example 1 in section 4 below.
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Our players are resource-bounded rational and reluctant to use his own subjective

high-order beliefs. By resource-bounded rationality, we mean that in making a decision

it is costly for a type (ti
mi , mi) to analyze each possible state of the world. He is also

reluctant to use high-order beliefs because it involves a high content of error. Hence,

in processing up to his mi-th-order belief, where mi ∈ N, he has to pay the utility

cost of Ci(mi). Then, a type (ti
mi , mi) has two alternatives, which are first to use

di
mj+1

(ti
mi , mi) for free, or second to process his own subjective belief up to the mi′-th-

order, which is of course higher than the mi-th-order, and pay the additional utility

cost (Ci(mi′)− Ci(mi)). When the type (ti
mi , mi) processes an additional order of his

belief, he has to encounter additional possible states of the world, and he thinks that

it involves higher errors. Hence, we set that for any mi′ > mi, Ci(mi′) > Ci(mi). This

cost function is defined as a part of the state s ∈ S, which means that both players

know the exact value of Ci(mi), ∀i.

The players’ preferences satisfy standard axioms of subjective expected utility maxi-

mizers. Hence, their preferences can be represented by expected utility functions. Given

functions φj(tj
mj , m

j) and µj(tj
mj) of the player j, we specify utility function of a type

(ti
mi , mi), when he plays action ai as:

U i(ai, (timi , mi); φj(tj
mj , µ

j(tj
mj))) =

∑
s×tj

mj∈S×T j

mj

[
ui

(
ai; φj(tj

mj , µ
j(tj

mj)), s
)
− Ci(mi)

]
·p(s×tj

mj),

(8)

where ui(.) is a Bernoulli payoff function of player i, the probability distribution function

p is equal to δi
mj+1

=proj∆X
mj

timi , for a type (ti
mi , mi) with mi ≥ mj +1, and it is equal

to di
mj+1

(ti
mi , mi) for a type (ti

mi , mi) with mi < mj + 1.
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Define the best response correspondence BRi : T i
mi ×N×Φj ×M j → Ai for a type

(ti
mi , mi), ∀mi ≤ mi as:

BRi((timi , mi); φj(tj
mj , µ

j(tj
mj))) = arg max

ai∈Ai
U i(ai, (timi , mi); φj(tj

mj , µ
j(tj

mj))). (9)

Then, optimal decision φi∗(ti
mi , mi) for a type (ti

mi , mi), given φj(tj
mj , m

j) and µj(tj
mj),

is:

φi∗(timi , mi) ∈ BRi(timi , mi; φj(tj
mj , µ

j(tj
mj))),∀timi and ∀mi ≤ mi. (10)

Note that for a given pair of (φj, µj), φi∗(ti
mi , mi) may not be equal to φi∗(ti

mi , mi′), if

mi 6= mi′.

A type ti
mi processes his high-order beliefs up until the point that the additional

benefit from processing his belief is less than or equal to zero. This involves comparing

the value of expected utility U i(φi∗(ti
mi , mi), (ti

mi , mi); φj∗(tj
mj , µ

j∗(tj
mj))) at different

levels of mi. Consider the case that currently a type ti
mi forms his beliefs up to the

mi-th order and he is considering whether to process his mi′-th-order belief, in which

mi′ > mi. He knows his mi′-th-order belief, but processing it involves positive additional

cost of (Ci(mi′)− Ci(mi)). If processing this high order belief does not alter his decision,

there is no need for him to process it. This is because there is no additional benefit,

while he has to pay additional cost. Also, he will not process his mi′-th-order belief

when the benefit of processing his additional beliefs is less than the additional cost.

Hence, he processes his mi′-th-order belief, only when (i) it alters his decision, and (ii)

the expected loss from not processing it is more than the additional cost.

Formally, given φi∗ and (φj∗, µj∗), a type ti
mi processes his high order belief up to the

optimal order µi∗(ti
mi). For convenient, here we write φi∗(mi) to represent φi∗(ti

mi , mi),

and U i(φi∗(mi), (ti
mi , mi′); φj∗, µj∗) for U i(φi∗(ti

mi , mi), (ti
mi , mi′); φj∗(tj

mj , µ
j∗(tj

mj))). Note
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that mi′ may not be equal to mi. The optimal value µi∗(ti
mi) will make, ∀mi ≤ µi∗(ti

mi):

U i(φi∗(µi∗(timi)), (timi , µi∗(timi)); φj∗, µj∗) ≥ U i(φi∗(mi), (timi , µi∗(timi)); φj∗, µj∗), (11)

and, ∀mi′ > µi∗(ti
mi),

U i(φi∗(µi∗(timi)), (timi , mi′); φj∗, µj∗) ≥ U i(φi∗(mi′), (timi , mi′); φj∗, µj∗). (12)

For the case of mi ≤ µi∗(ti
mi), if the type ti

mi does not process his µi∗(ti
mi)-th-order

belief, he chooses φi∗(mi), while if he processes it, he chooses φi∗(µi∗(ti
mi)). Using

utility function from (8) (which considers processing cost already), the condition in

(11) says that it is worth for a type ti
mi to process up to his µi∗(ti

mi)-order belief, since

the expected loss from not processing it is more than the additional cost. For the case

of mi′ > µi∗(ti
mi), if the type ti

mi process his mi′-order belief, he chooses φi∗(mi′). Then,

the condition (12) says that he does not want to process it.

Then, we can specify the exact conditions for an equilibrium of the model as a pair

(φi∗, µi∗) ,∀i, where:

• Each type ti
mi has a correct belief on the pair (φj∗, µj∗).

• φi∗(ti
mi , mi) satisfies condition (10), given (φj∗, µj∗).

• µi∗(ti
mi) satisfies conditions (11) and (12), given φi∗ and (φj∗, µj∗).

• mi is the maximum value of µi∗(ti
mi), ∀i, when comparing across all ti

mi ∈ T i
mi .

3 Some Characterization of Equilibria of the Model

In this section, we want to discuss some characteristics of the equilibrium in our model.

These results will lead to a practical way to figure out an equilibrium of the model.
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The below proposition 1 tells us the reason why our analyses complete with the

decisions of each of ti
mi and tj

mj . There is no need to look at the decisions of each ti,

which is the same as ti∞ in our notation.

Proposition 1 Let mi, and mj be given. For each mi,1 ≥ mi, let timi,1 ∈ Υi
mi,1(timi).

Then ∀mi′ ≤ mi, φi∗(timi,1 , mi′) = φi∗(ti
mi , mi′). Moreover, µi∗(timi,1) = µi∗(ti

mi).

Proof. From our definitions, (timi,1 , mi′) = (ti
mi , mi′) = timi′ . Hence, given mj:

U i(ai, (timi,1 , mi′); φj∗, µj∗) = U i(ai, (timi , mi′); φj∗, µj∗), for any given φj∗, µj∗.

The problem that each has to solve is the same, which makes φi∗(timi,1 , mi′) = φi∗(ti
mi , mi′).

Then, if ti
mi decides to stop forming high-order belief at the µi∗(ti

mi)-th order, which is

lower than the mi-th order by definition, this means, ∀mi′′ ≤ µi∗(ti
mi):

U i(φi∗(µi∗(timi)), (timi , µi∗(timi)); φj∗, µj∗) ≥ U i(φi∗(mi′′), (timi , µi∗(timi)); φj∗, µj∗), (13)

and, ∀mi′′′ > µi∗(ti
mi):

U i(φi∗(µi∗(timi)), (timi , mi′′′); φj∗, µj∗) ≥ U i(φi∗(mi′′′), (timi , mi′′′); φj∗, µj∗). (14)

The condition in (13) and the fact that φi∗(timi,1 , mi′) = φi∗(ti
mi , mi′), ∀mi′ ≤ mi,

makes, ∀mi′′ ≤ µi∗(ti
mi):

U i(φi∗(µi∗(timi)), (timi,1 , µi∗(timi)); φj∗, µj∗) ≥ U i(φi∗(mi′′), (timi,1 , µi∗(timi)); φj∗, µj∗).

(15)

Then, for mi′′′ > µi∗(ti
mi), we need that:

U i(φi∗(µi∗(timi)), (timi,1 , mi′′′); φj∗, µj∗) ≥ U i(φi∗(mi′′′), (timi,1 , mi′′′); φj∗, µj∗). (16)
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The condition in (16) holds because, firstly, if mi ≥ mi′′′ > µi∗(ti
mi), (14) and the

fact that φi∗(timi,1 , mi′) = φi∗(ti
mi , mi′), ∀mi′ ≤ mi, make (16) hold, and, secondly, if

mi′′′ > mi, (16) holds by the definition of mi.

Then, from (15) and (16), timi,1 also stops forming his high-order belief at the

µi∗(ti
mi)-th order. That is µi∗(timi,1) = µi∗(ti

mi).

From proposition 1, we can conclude that for any type ti ∈ Υi
∞(ti

mi), he behaves in

the same way as his associated ti
mi . Hence, there is no need to find optimal action for

each ti.

Next, our main objective is to show corollary 3, which says that given the value of

mj, the value of mi must be between mj−1 and mj +1. This is because there is no need

for a type ti
mi to go further than his mj + 1-th-order belief, which makes mi ≤ mj + 1.

It is also true that a type tj
mj will not go further than his mi + 1-th-order belief, which

makes mj − 1 ≤ mi. Proposition 2 tells the reason for this.

Proposition 2 Let mj be given. For any mi, where mi ≥ mi ≥ mj + 1,

φi∗(timi , mi) = φi∗(timi , mi + 1)

Proof. Let ai∗ = φi∗(ti
mi , mi) ∈ arg max

ai∈Ai
U i(ai, (ti

mi , mi); φj∗, µj∗). Then, ∀ai ∈ Ai we

have:

∑
(s,tj

mj )∈S×T j

mj

[
u

(
ai∗; φj∗(tj

mj , µ
j∗(tj

mj)), s
)
− Ci(mi)

]
· p(s, tj

mj)

≥
∑

(s,tj
mj )∈S×T j

mj

[
u

(
ai; φj∗(tj

mj , µ
j∗(tj

mj)), s
)
− Ci(mi)

]
· p(s, tj

mj),
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which makes:

∑
(s,tj

mj )∈S×T j

mj

[
u

(
ai∗; φj∗(tj

mj , µ
j∗(tj

mj)), s
)]
· δi

mj+1(s, t
j

mj) (17)

≥
∑

(s,tj
mj )∈S×T j

mj

[
u

(
ai; φj∗(tj

mj , µ
j∗(tj

mj)), s
)]
· δi

mj+1(s, t
j

mj).

When mi ≥ mj + 1, we have p to be equal to δi
mj+1

=proj∆X
mj

timi . This is also be

the case for a type (ti
mi , mi + 1). With constant Ai set, minus Ci(mi + 1) both sides of

(17), we have that ∀ai ∈ Ai:

∑
(s,tj

mj )∈S×T j

mj

[
u

(
ai∗; φj∗(tj

mj , µ
j∗(tj

mj)), s
)
− Ci(mi + 1)

]
· δi

mj+1(s, t
j

mj)

≥
∑

(s,tj
mj )∈S×T j

mj

[
u

(
ai; φj∗(tj

mj , µ
j∗(tj

mj)), s
)
− Ci(mi + 1)

]
· δi

mj+1(s, t
j

mj)

We have ai∗ is also an φi∗(ti
mi , mi + 1). The relationship in the opposite direction is

also true (actually, both are the same problem). Hence, given φj∗and µj∗, φi∗(ti
mi , mi) =

φi∗(ti
mi , mi + 1).

Corollary 3 It must be the case that mj − 1 ≤ mi ≤ mj + 1, ∀i.

Proof. Firstly, at mi = mj + 1, under the condition in proposition 2, with Ci(mi) > 0

and Ci(mi′) > Ci(mi), for mi′ > mi, we have ∀mi′ > mi:

U i(φi∗(mi), (timi , mi′); φj∗, µj∗) ≥ U i(φi∗(mi′), (timi , mi′); φj∗, µj∗).

This is because we have φi∗(mi) = φi∗(mi′), while Ci(mi′) > Ci(mi). Hence, each type

ti
mi does not want to go up to the next order belief. Then, µi∗(ti

mi) for each ti
mi is less

than or equal to mj + 1, which makes mi ≤ mj + 1.
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Since the above must be true for both i and j, mj − 1 ≤ mi ≤ mj + 1.

With corollary 3, our problem can be reduced a lot. In deciding which order of

beliefs to stop processing, a type ti
mi needs to compare his current order of beliefs to

ones up to his mj + 1-th order, which must be less than or equal to his mi + 2-th order

according to corollary 3, only. There is no need for him to consider ones higher than

the mj + 1-th order.

The below proposition 4 says that without processing cost Ci(mi), a type ti wants

to climb up all his belief hierarchy.

Proposition 4 If Ci(mi) = 0 ∀i and mj ≥ mi ≥ 0, U i(φi∗(mi), (ti
mi , mi + 1); φj∗, µj∗)

is always less than or equal to U i(φi∗(mi + 1), (ti
mi , mi + 1); φj∗, µj∗). This means that

the type ti would want to climb up all his belief hierarchy.

Proof. Given mj ≥ mi ≥ 0, functions φj∗, µj∗, and Ci(mi) = 0, let φi∗(ti
mi , mi) =

ai∗
mi ∈ Ai. Then, from the definition of φi∗(ti

mi , mi + 1), we have that ∀ai ∈ Ai:

∑
(s,tj

mj )∈S×T j

mj

[
u

(
φi∗(timi , mi + 1); φj∗(tj

mj , µ
j∗(tj

mj)), s
)]
· p(s, tj

mj)

≥
∑

(s,tj
mj )∈S×T j

mj

[
u

(
ai; φj∗(tj

mj , µ
j∗(tj

mj)), s
)]
· p(s, tj

mj),

or

U i(φi∗(mi + 1), (timi , mi + 1); φj∗, µj∗) ≥ U i(ai, (timi , mi + 1); φj∗, µj∗).

Since ai∗
mi ∈ Ai, we also have:

U i(φi∗(mi + 1), (timi , mi + 1); φj∗, µj∗) ≥ U i(ai∗
mi , (timi , mi + 1); φj∗, µj∗).

The inequality holds for every realization of (ti
mi , mi +1). At any level of mi, if there

is no processing cost and a type (ti
mi , mi) thinks that mj ≥ mi, he wants to climb up

15



an additional order of belief. This is also true for any type (tj
mj , m

j) of player j. Hence,

both players know this and want to climb up all their infinite hierarchies of beliefs.

From proposition 4, if there is no processing costs for each player, our model turns

back to be a standard Bayesian game.

4 An Example

We provide an example in this section. We write {Z1, z1; Z2, z2; ...; Zn, zn} to denote a

probability distribution, in which event Zl has probability zl to occur, l = 1, ..., n. The

probability distribution δi
mi,n is the n-th possible mi-th order belief of player i, which

is equal to projXmi−1
timi,n.

Example 1: Figure 1 below shows the gross Bernoulli payoffs of player 1 and 2,

respectively. The only uncertainty here is the payoffs of player 1 when he chooses action

(row) C. We can call the left table as the L state, and the right the H state. Player

1 knows exactly in which state he is. Player 2 does not know that. We construct the

type space for each player in this example after the payoffs table:

Figure 1: Bernoulli payoffs matrices of Example 1
A B C A B C

A 40,40 28,14 24,36 A 40,40 28,14 24,36
B 14,28 36,36 32,30 B 14,28 36,36 32,30
C 18,24 22,32 32,40 C 32,24 33,32 34,40

L H

• Alternative beliefs of player 1:

– 1st-order beliefs:

δ1
1,1 = {S1, 1}, and δ1

1,2 = {S2, 1}.
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– 2nd-order beliefs:

δ1
2,1 = {(S1, t

2
1,1),

3
4
; (S1, t

2
1,2),

1
4
}, δ1

2,2 = {(S1, t
2
1,1),

1
4
; (S1, t

2
1,2),

3
4
},

δ1
2,3 = {(S2, t

2
1,1),

3
4
; (S2, t

2
1,2),

1
4
}, and δ1

2,3 = {(S2, t
2
1,1),

1
4
; (S2, t

2
1,2),

3
4
}.

– 3rd-order beliefs:

δ1
3,1 = {(S1, t

2
1,1, t

2
2,1),

3
4
; (S1, t

2
1,2, t

2
2,2),

1
4
},

δ1
3,2 = {(S1, t

2
1,1, t

2
2,1),

1
4
; (S1, t

2
1,2, t

2
2,2),

3
4
},

δ1
3,3 = {(S2, t

2
1,1, t

2
2,1),

3
4
; (S2, t

2
1,2, t

2
2,2),

1
4
},

and δ1
3,4 = {(S2, t

2
1,1, t

2
2,1),

1
4
; (S2, t

2
1,2, t

2
2,2),

3
4
}.

– Higher-order beliefs:

Any coherent beliefs.

• Type space of player 1:

– t11,1 = {δ1
1,1}, and t11,2 = {δ1

1,2}.

– t12,1 = {δ1
1,1, δ

1
2,1}, t12,2 = {δ1

1,1, δ
1
2,2}, t12,3 = {δ1

1,2, δ
1
2,3}, and t12,4 = {δ1

1,2, δ
1
2,4}.

– t13,1 = {δ1
1,1, δ

1
2,1, δ

1
3,1}, t13,2 = {δ1

1,1, δ
1
2,2, δ

1
3,2}, t13,3 = {δ1

1,2, δ
1
2,3, δ

1
3,3}, and t13,4 =

{δ1
1,2, δ

1
2,4, δ

1
3,4}.

– Types with higher-order beliefs can be ones with any coherent higher-order

beliefs.

• Alternative beliefs of player 2:

– 1st-order beliefs:

δ2
1,1 = {S1,

3
4
; S2,

1
4
}, and δ2

1,2 = {S1,
1
4
; S2,

3
4
}.

– 2nd-order beliefs:

δ2
2,1 = {(S1, t

1
1,1),

3
4
; (S2, t

1
1,2),

1
4
}, and δ2

2,2 = {(S1, t
1
1,1),

1
4
; (S1, t

1
1,2),

3
4
}.

– 3rd-order beliefs:

δ2
3,1 = {(S1, t

1
1,1, t

1
2,1),

9
16

; (S1, t
1
1,1, t

1
2,2),

3
16

; (S2, t
1
1,2, t

1
2,3),

3
16

; (S2, t
1
1,2, t

1
2,4),

1
16
},
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δ2
3,2 = {(S1, t

1
1,1, t

1
2,1),

3
16

; (S1, t
1
1,1, t

1
2,2),

9
16

; (S2, t
1
1,2, t

1
2,3),

1
16

; (S2, t
1
1,2, t

1
2,4),

3
16
},

δ2
3,3 = {(S1, t

1
1,1, t

1
2,1),

3
16

; (S1, t
1
1,1, t

1
2,2),

1
16

; (S2, t
1
1,2, t

1
2,3),

9
16

; (S2, t
1
1,2, t

1
2,4),

3
16
},

and δ2
3,4 = {(S1, t

1
1,1, t

1
2,1),

1
16

; (S1, t
1
1,1, t

1
2,2),

3
16

; (S2, t
1
1,2, t

1
2,3),

3
16

; (S2, t
1
1,2, t

1
2,4),

9
16
}.

– 4th-order beliefs:

δ2
4,1 = {(S1, t

1
1,1, t

1
2,1, t

1
3,1),

9
16

; (S1, t
1
1,1, t

1
2,2, t

1
3,2),

3
16

; (S2, t
1
1,2, t

1
2,3, t

1
3,3),

3
16

;

(S2, t
1
1,2, t

1
2,4, t

1
3,4),

1
16
},

δ2
4,2 = {(S1, t

1
1,1, t

1
2,1, t

1
3,1),

3
16

; (S1, t
1
1,1, t

1
2,2, t

1
3,2),

9
16

; (S2, t
1
1,2, t

1
2,3, t

1
3,3),

1
16

;

(S2, t
1
1,2, t

1
2,4, t

1
3,4),

3
16
},

δ2
4,3 = {(S1, t

1
1,1, t

1
2,1, t

1
3,1),

3
16

; (S1, t
1
1,1, t

1
2,2, t

1
3,2),

1
16

; (S2, t
1
1,2, t

1
2,3, t

1
3,3),

9
16

;

(S2, t
1
1,2, t

1
2,4, t

1
3,4),

3
16
},

and δ2
4,4 = {(S1, t

1
1,1, t

1
2,1, t

1
3,1),

1
16

; (S1, t
1
1,1, t

1
2,2, t

1
3,2),

3
16

; (S2, t
1
1,2, t

1
2,3, t

1
3,3),

3
16

;

(S2, t
1
1,2, t

1
2,4, t

1
3,4),

9
16
}.

– Higher-order beliefs:

Any coherent beliefs.

• Type space of player 2:

– t21,1 = {δ2
1,1}, and t21,2 = {δ2

1,2}.

– t22,1 = {δ2
1,1, δ

2
2,1}, and t22,2 = {δ2

1,1, δ
2
2,2}.

– t23,1 = {δ2
1,1, δ

2
2,1, δ

2
3,1}, t23,2 = {δ2

1,1, δ
2
2,1, δ

2
3,2}, t23,3 = {δ2

1,2, δ
2
2,2, δ

2
3,3}, and t23,4 =

{δ2
1,2, δ

2
2,2, δ

2
3,4}.

– Types with higher-order beliefs can be ones with any coherent higher-order

beliefs.

According to the type spaces above, players are allowed to form only two alternative

beliefs over the space of uncertainty. The first belief is that there is high possibility

that the first event will occur, which is represented by the probability distribution

18



{Z1,
3
4
; Z2,

1
4
}. The second alternative is that there is low possibility that the first event

will occur, which is represented by the probability distribution {Z1,
1
4
; Z2,

3
4
}. Hence,

for example, player 2 with his first-order belief, can only be either t21,1, or t21,2, and the

type t11,1 of player 1 can become only either t12,1, or t12,2.

There are some orders of beliefs that players need not to form additional beliefs.

These are ones that he can infer from his knowledge. For example, player 1 needs not

to form his first-order belief, since he knows exactly his own payoffs. Player 2 needs

not to form second-order beliefs, since he knows that player 1 knows his own payoffs,

and, hence, if it is in state L, it must be the type t11,1 that he faces, and if it is in state

H, it must be the type t11,2. We set up processing costs accordingly, as follow:

C1(1) = 0, C1(2) = 1, C1(3) = 1.

C2(1) = 1, C2(2) = 1, C2(3) = 3.

We also assume that when there is no cost, players will process the next order of belief.

At this point the description of the example is complete. It can be checked that

there is an equilibrium in this example in which:

• m1 = 3, and m2 = 2.

• Optimal actions for all types (t1
m1 , m1) of player 1 are:

– φ1∗(t13,1, 0) = φ1∗(t13,2, 0) = φ1∗(t13,3, 0) = φ1∗(t13,4, 0) = A.

– φ1∗(t13,1, 1) = φ1∗(t13,2, 1) = A, and φ1∗(t13,3, 1) = φ1∗(t13,4, 1) = C.

– φ1∗(t13,1, 2) = A, φ1∗(t13,2, 2) = C, φ1∗(t13,3, 2) = A, and φ1∗(t13,4, 2) = C.

– φ1∗(t13,1, 3) = A, φ1∗(t13,2, 3) = C, φ1∗(t13,3, 3) = A, and φ1∗(t13,4, 3) = C.

• Optimal actions for all types (t2
m2 , m2) of player 2 are:
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– φ2∗(t22,1, 0) = φ2∗(t22,2, 0) = C.

– φ2∗(t22,1, 1) = A, and φ2∗(t22,2, 1) = C.

– φ2∗(t22,1, 2) = A, and φ2∗(t22,2, 2) = C.

– φ2∗(t23,1) = A, φ2∗(t23,2) = A, φ2∗(t23,3) = A, and φ2∗(t13,4) = C.

– φ2∗(t24,1) = A, φ2∗(t24,2) = A, φ2∗(t24,3) = A, and φ2∗(t14,4) = C.

• Optimal beliefs processing point for all types t1
m1 of player 1 are:

– µ1∗(t13,1) = µ1∗(t13,2) = 1, µ1∗(t13,3) = 3, and µ1∗(t12,4) = 1.

• Optimal beliefs processing point for all types t2
m2 of player 2 are:

– µ2∗(t22,1) = 2, and µ2∗(t22,2) = 0.

• The optimal outcome:

– φ1∗(t13,1, µ
1∗(t13,1)) = φ1∗(t13,2, µ

1∗(t13,2)) = A, φ1∗(t13,3, µ
1∗(t13,3)) = A, and

φ1∗(t13,4, µ
1∗(t13,4)) = A.

– φ2∗(t22,1, µ
2∗(t22,1)) = A, and φ2∗(t22,2, µ

2∗(t22,2)) = C.

For player 1, if he knows that m2 = 2, his relevant beliefs are ones up to his 3rd

order, according to corollary 3. Look at (t13,1, 3), given m2, φ2∗, and µ2∗, he believes

that he is facing type t22,1, whose optimal action φ2∗(t22,1, µ
2∗(t22,1)) is A, with probability

3
4
, and facing type t22,2, whose optimal action φ2∗(t22,2, µ

2∗(t22,2)) is C, with probability 1
4
.

He know exactly that he is in state L. With these knowledge and belief, his optimal

action is A. We can find optimal action for each (t13,l, 3), l = 2, 3, 4, in the same way.

Then, for (t13,l, 2), given m2, φ2∗, and µ2∗, he uses alternative belief d1
3(t

1
3,l, 2), which is

the same as δ1
3,l, for l = 1, ..., 4. Optimal action for (t13,l, 2), then, is the same as (t13,l, 3).

For (t13,1, 1) (which is the same as (t13,2, 1)), he uses alternative belief d1
3(t

1
3,1, 1), which can
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be calculated to be {(S2, t
2
1,1, t

2
2,1),

1
2
; (S2, t

2
1,2, t

2
2,2),

1
2
}. Then, his optimal action is A. We

do the same way for (t13,3, 1) (which is the same as (t13,4, 1)). At last, for (t13,1, 0) (which

is the same as (t13,l, 1), for l = 2, 3, 4), he uses alternative belief d1
3(t

1
3,1, 0), which can be

calculated to be {(S1, t
2
1,1, t

2
2,1),

1
4
; (S1, t

2
1,2, t

2
2,2),

1
4
; (S2, t

2
1,1, t

2
2,1),

1
4
; (S2, t

2
1,2, t

2
2,2),

1
4
}. His

optimal action is A.

With these optimal decisions, conditions (11) and (12) can be used to check for

the optimal belief processing point. For t13,1 with his 1st-order belief, using the free

alternative belief his optimal decision is A. If he uses his own 3rd-order belief, his

optimal decision is still A, but he has to pay processing cost for one unit. Hence, he

will choose to stay at his 1st-order belief. Contrary to t13,3 with his 1st-order belief,

using the free alternative belief his optimal decision is C. If he uses his own 3rd-order

belief, his optimal decision is A. If he does not process his 3rd-order belief, he chooses

C and loss 3.5 units of forgone utility, which is higher than the additional processing

cost of 2 units. Hence, he will decide to process his 3rd-order belief, paying for the

processing cost, but save his forgone utility.

The optimal decisions and belief processing point of player 2 can be checked in the

same way.

5 Discussion in Relation to Standard Bayesian Games

5.1 An advantage over Bayesian game with finite type space

In an attempt to model a standard Bayesian game with finite type space, a modeller

must follow the following steps:4

Step 1 : For decision-maker 1, assume that he must know that there are only 2

possible types for decision-maker 2, namely:

4Here, we consider the simplest case that there are only 2 possible types for each of the two decision-
makers.
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t2,1 = (δ2,1
1 , δ2,1

2 , δ2,1
3 , ...),

and t2,2 = (δ2,2
1 , δ2,2

2 , δ2,2
3 , ...).

Suppose that the nth belief is the first order of belief that δ2,1
n 6= δ2,2

n . Therefore if

n > 1, it means that δ2,1
l = δ2,2

l for 1 ≤ l < n.

Step 2 : Construct hierarchy of beliefs for a type t1,i of player 1 with additional

conditions that:

1. For 1 ≤ l < n, δ1,i
l+1(δ

2,1
l ) = 1.

2. For l ≥ n, supp δ1,i
l+1 ⊆ ∆Xl =

{
proj∆Xl

t2,1, proj∆Xl
t2,2

}
.

Step 3 : Impose the same conditions to all types of each decision-maker.

These three steps prevent the expansion of type space into infinite space, while allow

each player to form his infinite hierarchies of belief. This category of models is very

restrictive. It requires that there are limited number of types (hierarchies of beliefs)

available for each decision-maker. Moreover, decision-maker i must know all the details

of the hierarchy of beliefs of each type of player j. The assumption of common prior

helps us to avoid exposing with these restrictive assumptions. However, common prior

assumption has its own problems. Morris [6] clearly outlines arguments against the

assumption.

Our model does not have this problem. We can use any type space without imposing

the common knowledge assumption. Even we need finite state space, S, and we need

players to form finite number of beliefs in each order, our model is more general in that

it allows many different beliefs in each order, which will result in the infinite number

of types for each player.

5.2 An advantage over general Bayesian games

In a general standard Bayesian game, in which a player does not have unique belief in

every order, even if we start from a finite set S, the universal state space, (S×T i×T j), is
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an infinite space. As discussed in section 3 of Brandenburger and Dekel [2], we will have

infinite support for belief of a type ti of player i over (S × T j), gi(ti). Thus, in making

a decision, decision-maker i must consider all the infinite types of j. The equilibrium

outcome of the model is difficult the calculate, unless we impose some restrictions to

make continuous strategy functions.

This category of models is interesting because it is closer to the reality. It is hard

to believe that a person can know all the details of belief hierarchies of another person.

However, allowing more general beliefs posts a problem of infinite number of types, and

consequently infinite number of optimization problems, one for each type.

Our model solves this problem by forcing each player to use just finite belief hier-

archy. As long as the state space and the number of different beliefs in each order are

finite, we will face with finite number of optimization problems.

5.3 Problem with predictive power

Recent literature shows that higher-order uncertainty can affect the outcome of a game

(For example, see Rubinstein [9], Weinstein and Yildiz [13], and Feinberg and Skrzypacz

[3]). We can see this in example 1 of section 4 above that the type t12,3 has different

optimal action from the type t12,4, even if the only difference between them is their

different 2nd-order beliefs. This finding posts a serious problem to Bayesian games.

To create a good model with predictive power, we have to specify correctly the whole

infinite belief hierarchy of each type of each player. If not, the incorrect specification

can divert the outcome of the game. Weinstein and Yildiz [13] and Morris, Postlewaite,

and Shin [7] find some restriction to soothe this problem.

Our model can also reduce the problem, since players here depend on just finite

belief hierarchies in making their own decisions. Hence, our model just requires correct

specification of beliefs in these finite orders. However, our model is subject to another
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criticism that is we must specify correctly the processing cost functions of each player

in order to allow our model to have predictive power5. A way to avoid this criticism is

to put the cost functions into the space of uncertainty, S. This will expand our type

space, but it does not affect other parts of the model.

5.4 Augmented Bayesian game with finite type space

If we augment the belief hierarchy of a type ti
mi , by firstly for l ≤ µi∗(ti

mi), preserve

the value of δi
l =proj∆Xl−1

ti
mi , and, secondly for l > µi∗(ti

mi), augment the beliefs to

be common knowledge of simple alternative beliefs, we can change our model into a

standard Bayesian game with finite type space. Hence, this model can also provide an

alternative interpretation of the Bayesian games with appropriate finite type spaces. A

Bayesian game with appropirate finite type space can be thought of as a general game,

in which players have costs in processing their own beliefs.

6 Conclusion

We propose an incomplete information game, in which rational players depend on finite

belief hierarchies in determining their optimal actions. This is done by introducing

processing costs to players in the model. This model goes along well with recent ex-

perimental literature, which shows that people depend on finite belief hierarchies in

determining their actions. We discuss some advantages of our model over standard

Bayesian games and a variant of bounded rationality models.

We still have some problems in interpreting our processing costs. Also, we realize

that the presence of the cost function and its exact form can not be easily proven. This

reduces the predictive power of our model, when we want to use it with some real issues.

5We thanks Professor Martin Richardson in pointing out this problem to us.
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