
The Generalized Composite Commodity
Theorem: Aggregation of Grocery Items at

Firm Level�

Preliminary and Incomplete: Please Do Not Quote or Cite

Wanwiphang Manachotphongy

February 2007

Abstract

The large number of products and prices in multi-product �rms causes
great di¢ culty in analyzing consumers� choice among them. Prices of all
products in each �rm play some roles in consumers�decision-making process.
However, accounting for all of them would be very di¢ cult of not impossi-
ble. According to the Generalized Composite Commodity Theorem (GCCT)
developed by Lewbel (1996), it is possible to obtain valid aggregation of com-
modities if some certain conditions are satis�ed. A valid aggregation would
maintain the four conditions of rational demand system�e.g. adding up, ho-
mogeneity, slutsky symmetry and negative semi-de�niteness. Using data from
the UK supermarket industry, this paper shows that it is valid to aggregate
grocery items by their supermarket �rms.
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1 Introduction

The large number of products and prices in multi-product �rms causes great
di¢ culty in analyzing consumers�choice among them. In year 2005, for ex-
ample, Asda, Tesco, Sainsbury and Morrison�the four biggest supermarkets
in the UK�each sold over 30,000 di¤erent product lines. Prices of all the
products in each �rm play some roles in consumers�decision-making process.
However, accounting for all of them would be very di¢ cult if not impos-
sible. Recent empirical advances provide various remedies to this so-called
dimensionality problem. Which remedy is best depends on the nature of
the analysis. In our case, consumers make choices upon grocery stores which
provide similar product selections. Prices of individual products are unlikely
to be as in�uential to consumers�decisions as the overall "expensiveness" of
stores (or �rms). Therefore, our aim is to aggregate products at store- or
�rm-level while still retaining all properties of a valid demand system, i.e.
adding-up, homogeneity, Slutsky symmetry and negative semi-de�niteness.
In this paper, we use the generalized composite commodity theorem (GCCT)
developed by Lewbel (1996) to test for valid aggregation of grocery products
at �rm level.
The �rst composite commodity theorem was developed by John R. Hicks

(1936) and Wassily Leontief (1936). Hicks and Leontief suggest that if all
individual product prices are perfectly colinear1, those products can be ag-
gregated into the same group. While perfect colinearity provides a sensible
aggregation rationale, prices of di¤erent goods are hardly found to behave in
such way. As a result, tests of valid aggregation using this version of composite
commodity theorem often fail. Lewbel (1996) suggests that valid aggregation
can be obtained under a more empirically realistic condition. Under Lewbel�s
GCCT, valid aggregation can be obtained if all the deviations between indi-
vidual product prices and their group price index are independent of income
and all the price indices in the demand system.
Other than GCCT, existing remedies to the dimensionality problem are

such as multi-stage budgeting approach (Gorman, 1959) (Deaton and Muell-
bauer, 1980) and characteristics approach (Pinkse and Slade, 2004). In a
multi-stage budgeting framework, we assume that consumers �rst decide to
allocate expenditure among pre-de�ned sets of goods. Then, given the al-
located expenditure, they maximize their utility by choosing how much to
spend on each individual product in the groups. Here, weak separability is
required because the decision among individual goods in one group would

1Let pti denote price of product i at time t, Hicks(1936) and Leontief(1936) requires
p1a=p

0
a = p

1
b=p

0
b = ::: = � where � is a �xed price ratio.
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be independent of consumption level of other groups. Therefore, when using
the multi-stage budgeting approach, we need to both impose weak separabil-
ity on consumers�preferences and restrict their consumption pattern (Deaton
and Muellbauer, 1980). The characteristics approach, on the other hand, nei-
ther impose budget allocation pattern nor require weak separability. For this
approach, the cross-price elasticity of a given pair of products is estimated
in terms of similarity of their characteristics. Pinkse and Slade (2004), for
example, estimated brand-level cross-price elasticities of beers in the UK as
functions of price, sales volume, alcohol content, brewer identity, etc. There-
fore, rather than having to estimate all the cross-price elasticities directly,
we only have to estimate parameters associated with each characteristic. The
characteristics approach provides a convenient way to reduce the number of
dimensions, however, it can only be used when product characteristics are
observed.
Although GCCT is not subject to the above limitations, it can replace

other methods only when we do not need to assess cross-price elasticities at in-
dividual product level. GCCT remedies the dimensionality problem by aggre-
gating products into broader�and fewer�groups. As a result, only cross-price
elasticities at group level, not individual product level, can be estimated. For
the utility functional form, GCCT can be used with all homothetic utility
functions, almost ideal demand system (AIDS), translog demand system, and
any utility function in which goods are aggregated into two groups (Lewbel,
1996).
To date, GCCT has been used in many applications. Davis, Lin, and

Shumway (2000) apply GCCT to aggregate US and Mexican agricultural
outputs. They show that the theory provides support for aggregation into
as few as two agricultural output groups in each country. Capp and Love
(2002) analyze the demand system of di¤erent types and brands of fruit juice.
They compare the bias of price elasticities obtained through multi-stage bud-
geting approach and through GCCT approach and found that GCCT gives
more accurate results. Reed, Levedahl and Hallahan (2005) use GCCT to es-
timate demand elasticity of aggregated food products. They �rst use GCCT
to test for valid aggregation, then estimate own- and cross-price elasticities of
each product group. Davis (2003) use family-wise test of multiple hypotheses
to provide a stronger empirical support to GCCT. More discussion on the
family-wise test can be found in section 3.2.
This paper contributes to the composite commodity literature in two

aspects. First, we test for valid aggregation of products by their sellers (�rms)
rather than by their similarity. Second, we propose using the cointegrated
vector autoregressive model (cointegrated VAR) (Johansen, 1995) to perform
a more comprehensive test of valid aggregation.
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Using a data set obtained from the UK supermarket industry, we show
that it is valid to aggregate grocery items by their supermarket chains. In
this context, the price index for each supermarket chain is constructed using
prices of the same set of grocery items. Therefore, it is less likely�than in
a case where di¤erent price indices are constructed using di¤erent sets of
products�for the aggregation to pass the independence test2. More details on
this discussion can be found in section 3.1.
Potential bene�ts from valid �rm-level aggregation is substantial. Partic-

ularly, in the industrial organization context where we focus on competition
at �rm level rather than at individual product level. The ability to aggregate
products by �rm enables us to sidestep the dimensionality issue caused by too
many price parameters. In this paper, valid aggregation of grocery items by
supermarket chains allows us to easily study consumers�supermarket choice,
supermarket substitution pattern and their intensity of competition. These
merits also applies to other multi-product �rms cases.
The rest of the paper is organized as follows. Section 2 provides theoretical

overview of GCCT. Section 3 lays out an empirical overview and discusses
our testing strategy. Section 4 explores the data set as well as describes
our empirical implementation. Section 5 discusses the empirical result, while
section 6 concludes.

2 Theoretical Overview

The discussion on Generalized Composite Commodity Theorem (GCCT) is
taken directly from Lewbel (1996). Further reference can be found in the
original paper.
Following Lewbel (1996), let pi denote price of individual product i =

1; :::; n and Pj denotes price index of product group I = 1; :::; J . Then, de�ne
ri = log(pi), Rj = log(Pj), �i = log(pi=PI), r = n-vector of all individ-
ual product prices, R = J-vector of all price indices and � = n-vector of
log(pi=PI) where product i belongs to group I. The term �i is the deviation
of log individual price from log price index of the product group it belongs
to. �i is also called relative price of product i.
Before moving on to the aggregated product demand system, Lewbel �rst

explains the disaggregated product (individual product) case as a benchmark.
For any individual product, its observed budget share can be expressed in
terms of Marshallian demand and an error term. Suppose wi denotes ob-
served budget share of individual product i, gi(r; z) denotes a Marshallian

2The GCCT requires all the deviations between individual product prices and their
group price index to be independence of all the price indices in the system.
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demand function and ei denotes an error term with zero conditional mean,
we can express the empirical representation of individual product i�s demand
as:

wi = gi(r; z) + ei:

Since the error term ei has zero conditional mean (E(eijr; z) = 0), the ob-
served budget share is an unbiased estimator of demand:

E(wijr; z) = gi(r; z):
The function gi(r; z) is a valid Marshallian demand function because it sat-
is�es the following conditions:

1) Adding up ��ni=1gi = 1
2) Homogeneity �gi(r � k; z � k) = gi(r; z)
3) Slutsky symmetry �(@gi=@rj) + (@gi=@z)gj = (@gj=@ri) + (@gj=@z)gi
for all i and j
4) Negative semi-de�niteness �matrix ~s that is consist of elements
~sij = sij + gi(r;z)gj(r;z) for i 6= j and ~sii = sii + gi(r;z)2 � gi(r;z) is
nevative semide�nite.

When a demand function has the �rst three properties, it satis�es the
�rst-order conditions for utility maximizations and can be called integrable.
When a demand function has all the four properties, it is arose from rational
decision and can be called rational.
Although disaggregated product demand system are integrable and ra-

tional, it is not always true for the aggregated product demand system coun-
terpart. Lewbel (1996) shows that aggregated product demand system could
be integrable and rational under two assumptions.

1. The disaggregated demand functions gi(r; z) for i = 1; :::; n are ratio-
nal - that is, the function satis�es adding up, homogeneity, Slutsky
symmetry, and negative semi-de�niteness.

2. The relative price of each individual product �i for i = 1; :::; n are
independent of all the aggregated product price indices Rj for j =
1; :::; J and income z in the demand system.

To show how these two assumptions come to play their parts, �rst let
some products i = 1; :::;M where (M < n) be aggregated into product
group j. Here, the observed budget share of group j can be written as Wj =
�Mi2jwi. Similar to the disaggregated product case, if Gj(R; z) is the budget
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share demand function for product group j and uj is an error term with zero
conditional mean, we can express the empirical representation of the budget
share demand function of aggregated products as:

Wj = Gj(R; z) + uj:

Since the error term uj has zero conditional mean (E(ujjR; z) = 0), the
observed budget share of product group j is an unbiased estimator of its
budget share demand counterpart:

E(WjjR; z) = Gj(R; z):

To proof whether Gj(R; z) satis�es the four requirements of rational
demand function, Lewbel started from establishing the term G�j(r; z) �
�Mi2jgi(r; z) which is group j demand expressed in terms of logged individual
prices r and income z. Then, he de�ned R�= r� � where R� is n-vector of
group prices with Rj in row i and for every row, i 2 j. The demand functions
gi(r; z); Gj(R; z) and G�j(r; z) are related to as follows:

G�j(r; z) = G�j(R
� + �; z) = �Mi2jgi(r; z) = �

M
i2jwi � �Mi2jei

G�j(R
� + �; z) = Wj � �Mi2jei

E[WjjR; z] = E[G�j(R
� + �; z)jR; z] + E[�Mi2jeijR; z]

Gj(R; z) = E[G�j(R
� + �; z)jR; z] + 0

If � is independent of the price index vector R (and thus, R�) and income

z, we can proceed to the following step:

Gj(R; z) =

Z
G�j(R

� + �; z)dF (�);

where F (�) is the distribution function of �. This equation says that the
aggregate group budget share Gj(R; z) is equal to the conditional expected
value of the sum of all product demand functions that belong to the group
G�j(r; z). Lewbel (1996) shows that when the two assumptions are satis�ed,
the budget share demand functions Gj(R; z) for j = 1; :::; J is a valid sys-
tem of composite demand equations. This is because they satisfy adding-up,
homogeneity, and (if not perfectly) nearly Slutsky symmetry. The demand
elasticities of Gj(R; z) for j = 1; :::; J are best unbiased estimates of within-
group sums of individual product demand elasticities.
In general, the �rst assumption�gi(r; z) for i = 1; :::; n are rational�is

satis�ed if we assume utility maximization. The second assumption, however,
requires empirical testing of whether the relative price �i for i = 1; :::; n
are independent of all the price indices Rj and income z. The next section
discusses empirical strategies used to test for these independence.
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3 Empirical Overview

Recall from the previous section, Lewbel�s independence assumption requires
each individual relative price �i to be independent of all the price indices in
the demand system (Rj for j = 1; :::; J) and income z. Since independence
is very di¢ cult if not possible to test, all previous works based their infer-
ences on correlation and cointegration tests (Lewbel, 1996), (Davis, Lin, and
Shumway, 2002), (Capps and Love, 2002) and (Reed, Levedahl, and Halla-
han, 2005). Whether correlation or cointegration test is appropriate depends
on the stationarity property of variables being tested. If variables are sta-
tionary, a standard correlation test such as Spearman�s rank correlation test
(Mendenhall, Schea¤er, and Wacherly, 1990) and F-test of signi�cant coe¢ -
cients (Theil, 1971, chapter 11) can be used. If variables are non-stationary,
a cointegration test (Johansen, 1995) is more appropriate.
It is worth noting here that we cannot draw a de�nite con�rmation of

valid aggregation even if we �nd no correlation or no cointegration between
�i and the vector R. This is because no correlation or no cointegration does
not imply independence. For empirical feasibility, however, we resort to test
of correlation and cointegration while being aware for their potential errors.
A correlation test between �i and the price index vector R and income

z can be performed by regressing �i on all the price indices Rj (for j =
1; :::; J) and income z. Likewise, a cointegration test could be performed
through multiple equations estimation. Since the number of parameters being
estimated grows with the number of lag length and the number of equations,
reliable estimates would be obtained only when the sample size is su¢ ciently
large.
In practice, it is di¢ cult to obtain a long time-series data on price. Most

data sets are available on quarterly or annual basis and usually last less than
50 years. For example, Lewbel (1996) obtained his data set from the U.S.
national income and product accounts (NIPA). The data was collected annu-
ally from 1954 to 1993; Davis, Lin and Schumway (2000) obtained their U.S.
and Mexican agricultural output information from Ball (1996). The data
was collected annually from 1949 to 1991. In both studies, the number of ob-
servations were less than 100. Given a small sample size, it is not possible to
obtain consistent estimates through multiple equations estimation. In other
words, it is not feasible perform correlation/cointegration test between the
relative price �i and all the price indices Rj (for j = 1; :::; J) simultaneously.
To remedy the small sample problem, many previous works perform a

so-called "single hypothesis testing". Here, rather than performing system
estimations, they perform correlation test or cointegration test only on rela-
tive price �i and the price index of the group it belongs to (Rj; where i 2 j).
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If the test is passed, the aggregation is assumed to be valid.
Single hypothesis testing is acceptable in many cases where relative prices

are most likely to be correlated with the price index of the groups they belong
to. That is, if the relative price �i is independent of the price index Rj where
i 2 j, it is very likely that �i would be independent of all other price indices
Rk for i =2 j. In our case, where products are aggregated by �rms not
by their similarity, it is less likely that the same logic can be applied. So,
the test of independence between �i and all other price indices Rk for i =2
j should be conducted. Davis (2003) and Davis, Lin, and Shumway (2000)
implement multiple hypotheses testing methods�also called family-wise test�
to test for independence between �i and all price indices Rj for j = 1; :::; J
in the demand system. We follow their analysis and will discuss about the
family-wise test in more detail at the end of this section.
The test strategy proposed in this paper is di¤erent from those imple-

mented in the majority of previous works, e.g. (Lewbel, 1996) (Davis, Lin and
Shumway, 2000) (Capps and Love, 2002). In those studies, a non-stationarity
test (unit root test) was performed on each individual variable��i, Rj and z.
Then, based on the stationarity property of each �i; Rj pair, they choose an
appropriate test method. If both �i and Rj are stationary, they perform a
correlation test. If both �i and Rj are non-stationary, they perform a cointe-
gration test. If one of the variables is stationary and another is non-stationary,
they assume that the variables are not correlated.
One problem with this testing strategy is the low power of the non-

stationarity test (large type-1 error) and so it is biased towards �nding
non-stationarity (Lo and Mackinley, 1989). Johansen (1995) suggests that
non-stationarity test can be performed more accurately through test of re-
strictions in cointegrated vector autoregressive models (cointegrated VAR).
This is because potential relations among variables in the cointegrated vector
help improve the power and accuracy of the test. This remedy is adopted in
this paper. The following section discusses the procedure through which we
perform the test of valid aggregation.

3.1 3-Step Correlation/Cointegration Test

This section describes our 3-step testing strategy. In brief, we �rst perform a
cointegration test on each �i and Rj pair regardless of their stationarity prop-
erties. Then, according to the cointegration test result, we verify stationarity
properties of variables through the "test for restrictions in a cointegrated
VAR model". Since the stationarity test here is nested inside a bivariate
system, potential relations between variables make the test result more ac-
curate than that of a single variable test (Johansen, 1995). Lastly, we apply
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a family-wise test method to con�rm the absence of own- and cross-group
correlation/cointegration between �i and Rj.

� Step 1: Cointegration test and Spearman�s rank Correlation test
Without testing for non-stationarity of variables, we �rst perform a
cointegration test (based on Johansen, 1995) on all combinations of
relative price �i for i = 1; :::; n and price index Rj for j = 1; :::; J . The
null hypothesis is no cointegrated relationship between �i and Rj. In
other words, �i and Rj form a nonstationary process. If this null hy-
pothesis cannot be rejected, we conclude that the given pair of relative
price �i and �rm-level price index Rj is not cointegrated. If the null
hypothesis is rejected and the process has full rank, it means that there
are two stationary processes in the bivariate system. In this case, we
perform Spearman�s rank correlated test on the two variables. If the
null hypothesis is rejected and the process is I(1), it means that there
is one stationary process in the bivariate system. If this happens, we
proceed to the next step

� Step2: Test of restrictions in cointegrated VAR model
When an I(1) process is found in step 1, it could be due to one of
the two following cases. First, relative price �i and price index Rj are
actually cointegrated. In this case, the aggregation would be invalid.
Second, one variable is nonstationary while another is. Since we did not
test for non-stationarity of variables prior to performing cointegration
tests, the second case is possible. If this is true, �i and Rj would not
be correlated in the �rst place and the aggregation would be valid. In
brief, step 2 performs restriction tests in cointegrated VAR model to
justify whether stationarity �nding is due to the �rst or the second
case.

� Step3: Family-wise or multiple hypotheses test
According to GCCT,valid aggregation requires each relative price �i
(for i = 1; :::; n) to be independent of all price indices in the demand
system (vector R) and income z. However, data limitation has pre-
vented many previous works from performing multiple equations esti-
mations to test for this independence. In stead of testing for indepen-
dence between relative price �i and the price index vector R, they only
test for independence between relative price �i and the price index it
belongs to Rj (where i � j). This practice is justi�ed if �i is more likely
to be correlated with Rj (where i � j) than with Rk (where k =2 j).
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By proo�ng the independence between �i and Rj (where i � j), the
independence between �i and Rk (where k � j) follows.

In our case, however, it is not as obvious that the relative price �i is
more likely to be correlated with the price index of the group it belongs
to. Our �rm-level aggregation involves constructing �rm-speci�c price
indices from the same set of grocery items. For instance, Rfirm1 is
constructed from eggs, bread, milk and meat sold by �rm 1, Rfirm2 is
constructed from eggs, bread, milk and meat sold by �rm 2, etc. Since
prices of the same items�e.g. eggs�are likely to be correlated across
�rms, each relative price (e.g. �store1_eggs) is likely to be correlated with
Rk where k =2 j as much as with Ri where i � j.
Davis(2003) discusses family-wise test methods that can be used in
this context. A family-wise hypothesis tests whether all the associated
individual hypotheses are true. In our case, a family hypothesis is that
�i is independent of all the elements in R and income z. Individual
hypotheses are 1) �i is independent of R1, 2) �i is independent of R2,
etc. Let H0 denote a family hypothesis and H1; :::; HJ denote all the
associated individual hypotheses. A family-wise hypothesis can be
expressed in terms of associated individual hypotheses as follows:

H0 = \Jj=1Hj:

With su¢ cient number of observations, there would be quite a few
candidates to test the above family-wise hypothesis. For example,
the F-test (Theil, 1971, chapter 11) can be used in case of stationary
variables; and the multivariate cointegration test (Johansen, 1995) can
be used in case of nonstationary variables. With insu¢ cient number of
observations, we need to use methods which accuracy does not depend
on the asymptotic property�e.g. size of the data set. The Bonferroni
procedure is one of the methods which satis�es this requirement. This
paper uses a modi�ed Bonferroni procedure called Hochberg procedure
(Hochberg,1979) to implement family-wise hypothesis testing.

3.2 Modi�ed Bonferroni Method

The reasoning behind the Bonferroni procedure is that when we test more
than one hypotheses at the same time, the chance of making at least one false
rejection (type1 error) would increase with the number of joint hypotheses
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we are testing. Consider the following individual and joint hypotheses:

H1 : �1 = 0

H2 : �2 = 0

and

HA : �1 = �2 = 0

It is easy to see why we are more likely to make false rejection with HA than
H1 or H2. Then consider the following joint hypotheses:

HA : �1 = �2 = 0

and

HB : �1 = �2 = �3 = �4 = �5 = �6 = �7 = 0:

It is also obvious to see that we are more likely to make false rejection with
HB than HA. The above two sets of examples allows us to make two claims.
First of all, since it is easier to make false rejection with multiple (joint) than
single hypothesis, the rejection level of joint hypothesis should be greater
than that of a single hypothesis. Second of all, since it is easier to make
false rejection when the number of single hypotheses increases, the rejection
level of joint hypothesis should increase with the number of single hypotheses.
A collection of hypotheses being jointly tested is called a "family hypoth-

esis". Its associated rejection level can be called the "family-wise error rate"
(FWER). As mentioned previously, if H0 denote a family hypothesis and
H1; :::; HJ denote all the individual hypotheses. A family-wise hypothesis
can be expressed in terms of associated individual hypotheses as:

H0 = \Jj=1Hj

And if � denotes the rejection level at which we test a single hypothesis, the
FWER can be expressed as:

FWER � � (1)

To make the rejection level decrease with the number of individual hy-
potheses in the family, Bonferroni proposed that FWER = �=s. If any
individual p-value is less than �=s, the family hypothesis H0 is rejected. Al-
though the Bonferroni�s FWER satis�es the requirement in 1, it leads to very
small chance of rejecting the null hypothesis when s gets large. All succes-
sive modi�ed Bonferroni Methods deals with this problem in various ways.
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Here, we use the method developed by Hochberg(1988) due to its ease of use
and high power3.
Let � be the level we use for a single hypothesis testing and let p(1)::: �

p(s) be the increasing arrangement of p-value associated with individual null
hypothesesH1; :::; Hs. The Hochberg procedure rejects individual hypothesis
Hj when p(j) � �=(s� j + 1). The family hypothesis H0 is retained only if
all the individual hypotheses are not rejected.

4 Data and Empirical Implementation

4.1 The data

Our price data are from the TNS�s Worldpanel survey. TNS randomly re-
cruited a number of households in the UK to participate in their panel sur-
vey program. Each household was given a personal scanner which they used
to record all their grocery shopping activities. The output data provided by
TNS includes items bought, unit bought, price paid and outlet of purchase
by 26,133 households over a 3-year time span (October 2002 to September
2005).
For our 3-year panel, we aggregate the information of each variable into 78

successive time periods. The reason why we choose a time period to be two-
week long is due to consumer�s shopping behavior. Two weeks is long enough
for us to believe that the decisions on grocery shopping in each period is
independent. On the other hand, it is short enough for us to believe that
all items bought during the two-week period contribute to a single utility
maximization not multiple utility maximizations. Manachotphong and Smith
(2006) uses the same reasoning to justify the length of consumers�shopping
period in their supermarket choice analysis.
Given the length of each time period, we calculate a Tornqvist price index

of each �rm using 55 grocery items. This comes from choosing �ve most
popular items from 11 most popular product categories which are consistent
across stores. The TNS categorizes grocery items into more general 268
distinct categories. These categories are such as milk, butter, vegetable, fruit
juice, toilet paper, canned food, canned �sh, frozen vegetable, �our, breakfast
cereal and etc. Out of 268 categories, our 11 popular categories constitute
of about 29.3 percent of the budget share�almost one third of consumer�s
spending on groceries. Table (1) shows the average budget share of each of

3According to Davis(2003), two other popular modi�ed Bonferroni procedures are Holm
procedure(Holm, 1979) and Simes procedure(Simes, 1986). Both are equally easy to
implement, but Holm is less powerful than Hochberg and Simes.
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Table 1: Product Category and Budget Share
Product Category Budget share (per cent)
Vegetable 6.3
Fruit 4.7
Milk 3.3
Cheese 3.0
Cooked Meat 2.6
Fresh Poultry 2.2
Breakfast Cereal 2.2
Bread 1.9
Yoghurt 1.5
Instant Co¤ee 1.0
Eggs 0.7
Total 29.3

Based on all consumer�s spending in May 2005.

the eleven product categories analyzed in this paper.
In 2007, the UK supermarket industry consists of 17 national-level chains

where the four biggest chains hold about 74.6 per cent of market share4.
These four biggest �rms are Asda, Morrisons, Sainsbury and Tesco. They
are also nicknamed "The Big4". For calculation tractability, we analyze only
the price indices of these four prominent �rms.

4.2 Empirical Implementation

To facilitate our analysis, some notations are modi�ed. First of all, the rela-
tive price of an individual product would be denoted as �ki (where i is used
to index product category and k is used to index �rm) rather than �i (where
i is used to index individual product). Therefore, �Tescoeggs � eggs at Tesco�
would be a di¤erent product from �Sainsburyeggs �eggs at Sainsbury. Second of
all, price indices are calculated at �rm level rather than at an aggregated
product level. For example, RTesco represents logged price index of grocery
items in Tesco and RSainsbury represents logged price index of grocery items
in Sainsbury. Therefore, we can write �ki = log(p

k
i � Pk) and Rj = log(Pj)

where pki is the Tornqvist price index of product category i sold by �rm k
and Pj is the Tornqvist price index of �rm j.
Since we analyze 11 most popular product categories in four �rms, there

are 44 relative prices �ki and four price indices Rj in total. As for income, we

4According to Taylor Nelson Sofres plc. (TNS).
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Figure 1: Log per-capita expenditure on grocery items

use per-capita expenditure on grocery items as a proxy.
Figure (1) plots log income (z) over time. It shows that, other than during

the Christmas and New Year holidays, the per-capita spending on grocery
is approximately stable. Figure (2), (3), (4) and (5) plot log price index of
Asda, Morrisons, Sainsbury and Tesco respectively. These variables �uctuate
more than expenditure. They also establish a steeper increasing trend over
time.
Having calculated all the relative prices �ki , price indices Rj and income

z, we now implement the 3-step test of correlation/cointegration.

4.2.1 3-Step Test: The Implementation

For step 1, we conduct a cointegration test (based on Johansen, 1995) on
�ki and each of the RAsda; RMorrisons; RSainsbury; RTesco; and z. A time trend
is added to re�ect rising nature of price. Appropriate numbers of lags are
added to each pair of �ki ; Rj being tested. Exogenous dummy variables are
also added to explain shocks to individual product prices and price indices.
As �rms usually charge premiums and give discounts according to their inven-
tory situation and marketing strategy, it is justi�ed to include those dummy
variables into the model.
Prior to performing a cointegration test for each bivariate system, we

conduct a diagnostic test of normality to ensure that the error terms are
normally distributed. This is a fundamental assumption of cointegration
analysis and needed to be satis�ed. In addition, we account for potential
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Figure 2: Log Asda Price Index (RAsda)
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Figure 3: Log Morrisons Price Index (RMorrisons)
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Figure 4: Log Sainsbury Price Index (RSainsbury)
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Figure 5: Log Tesco Price Index (RTesco)
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small sample bias by using Barrett correction and account for the low power
for cointegration test by increasing the critical level � to 10 per cent. If
we accept the null hypothesis of nonstationary process (two variables are
not cointegrated), we report the p-value. If we reject the null hypothesis of
nonstationary process (two variables are cointegrated), we proceed to the
second step.
Step 2 helps verify whether the stationarity �nding is because the two

variables are actually cointegrated or because one is stationary while another
is not. If the later case is true, the two variables would neither be correlated
nor cointegrated (Granger and Hallman, 1989). The procedure used is called
test of restrictions in cointegrated VAR model (Johansen, 1995).
If the test of restrictions shows that both variables are nonstationary,

the two variables are likely to be cointegrated and we report the p-value. If
the test shows that one variable is stationary while another is not, then we
conclude that they are neither correlated nor cointegrated. If it appears that
both variables are stationary, then we conduct a Spearman�s rank correlation
test and report the p-value.
In step 3, we use a modi�ed Bonferroni method called the Hochberg

procedure to perform family-wise hypothesis testing. Since GCCT requires
each �ki to be independent of all price indices and income, a family-wise
hypothesis test is required to con�rm this fact. Let Hk

i denote the family
hypothesis that �ki is neither correlated nor cointegrated with any of the price
indices and income. Then, let Hj denote an individual hypothesis that �ki is
neither correlated nor cointegrated with variable j. We can write

Hk
i = HR(asda) \HR(morrisons) \HR(sainsbury) \HR(tesco) \ z;

Hk
i = \jHj:

Table (2) shows the FWER of the original Bonferroni procedure and
the Hochberg procedure. A critical level of 0.1 is chosen to account for
the low power of cointegration test and small sample size (78 observations).
We can see that when the number of associated individual hypothesis (s)
gets large, the Bonferroni�s FWER becomes very small (FWER = �=s).
This makes it more unlikely for us to reject any individual null hypothesis.
The Hochberg procedure, on the other hand, remedies this shortcoming by
increasing the FWER for each individual hypothesis with the ordering of
their p-value (FWERi = �=(s� i+ 1) where i is the ascending ordering of
the p-value): The modi�cation improves the power of the test without adding
calculation burden.
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Table 2: Comparison of the family-wise error rates (FWER)

Order of the p-value (i)
(1 = smallest)

Bonferroni
signi�cance levels
p(i)� �=s

Hochberg
signi�cance levels
p(i)� �=(s� i+ 1)

1 0.025 0.020
2 0.025 0.025
3 0.025 0.033
4 0.025 0.050
5 0.025 0.100

Critical level for single hypothesis testing � = 0:1

5 Results

Table (3) reports aggregation test results. The �rst two columns de�ne �ki .
The next �ve columns report p-values from correlation or cointegration test
between �ki and RAsda;RMorrisons; RSainsbury; RTesco and z respectively. If both
�ki and Rj (or z) are nonstationary, we report the p-value from bivariate
cointegration test with number of lags in brackets. If both �ki and Rj (or
z) are stationary, we report the p-value from Spearman�s rank correlation
test. The last column reports the family-wise test result. Product i in �rm
k passes the test if all the p-values are higher than the Hochberg�s FWER
(see table(2)).
According to our 3-step test, all log price indices Rj are nonstationary,

log income z is stationary, and most log relative prices �ki are nonstationary.
Hence, all reported p-values between �ki and Rj are from cointegration test
while, all reported p-values between �ki and z are from Spearman�s rank
correlation test. Blank cells mean that one variable is stationary and another
is not. Therefore, no test is required. The two variable would neither be
correlated nor cointegrated (Granger and Hallahan, 1989).
In terms of family-wise test, three out of 44 individual products fail.

Those are cooked meats in Morrisons, cooked meat in Sainsbury, and instant
co¤ee in Sainsbury. Thus, for Asda and Tesco, aggregation is valid for all
product categories. For Morrisons, aggregation is valid for all categories
except for cooked meats. For Sainsbury, aggregation is valid for all categories
except for cooked meat and instant co¤ee.
It is worth noting that those three products failed the test because of

one common reason�they are correlated with income. Here, we need to keep
in mind that income is proxied by per-capita expenditure on grocery. Since
prices of grocery items are more likely to be correlated with expenditure on
grocery than income, the signi�cance of correlations are likely to be over-
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stated in our analysis. Unfortunately, actual income is not available on a
bi-weekly basis. The best that we can do is to acknowledge the existence of
this bias.
In sum, our results justify the aggregation of most grocery products at

�rm level. Only three out of 44 relative prices �ki failed the family-wise test
because they are correlated with expenditure on grocery. We expect these
correlations to weaken or even disappear had the actual income been used.
It is, therefore, possible that all the �ki actually pass the family-wise test. In
that best possible case, our proposed aggregation is completely valid.

6 Conclusion

This paper uses the generalized composite commodity theorem (GCCT) to
test for valid aggregation of grocery items at �rm level. The data is collected
through homescan technology over a 78 bi-week time period (3 years). The
analysis includes 11 most popular product categories in four biggest super-
market �rms in the UK, namely Asda, Morrisons, Sainsbury and Tesco. This
amounts to 44 distinct products and four product groups�one for each �rm�in
total. We propose a 3-step procedure to test Lewbel�s assumptions for valid
aggregation. Strong empirical support was found for 41 out of 44 products.
All products in Asda and Tesco pass the test, ten out of eleven products in
Morrisons pass the test, and nine out of eleven products in Sainsbury pass
the test. Three products fail the test because they are correlated with expen-
diture on grocery, our proxy for income. Because relative prices are less likely
to be correlated with income than with expenditure on grocery, it is possible
that all those three products pass the test if the actual income is used. In
that case, the GCCT would provide unanimously support for all aggregated
product groups.
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Table 3: Aggregation Test Results for Grocery Items by Firms
Relative Price (�ki ) Firm-Level Price Index (Rj ) Income Hochberg test

k= i= Asda Morrisons Sainsbury Tesco z Hki = \jHj
Asda

Milk

Vegetables

Fruits

Cheese

Cooked Meats

Fresh Poultry

Cereal

Bread

Yoghurt

Instant Co¤ee

Eggs

0.786(3) 0.559(2) 0.828(3) 0.859(3)

0.626(2) 0.191(2) 0.057(4) 0.465(3)

stationary

0.134(3) 0.197(3) 0.778(3) 0.181(2)

0.419(2) 0.227(2) 0.565(3) 0.271(3)

0.455(2) 0.985(2) 0.458(2) 0.688(2)

0.243(3) 0.559(2) 0.288(3) 0.533(3)

0.306(4) 0.903(2) 0.259(2) 0.541(2)

0.995(3) 0.729(1) 0.228(3) 0.882(3)

0.212(2) 0.386(3) 0.075(3) 0.097(3)

0.720(2) 0.737(2) 0.958(3) 0.945(3)

-

-

0.835

-
-

-

-

-

-

-

-

pass

pass

pass

pass

pass

pass

pass

pass

pass

pass

pass

Morrisons
Milk

Vegetables

Fruits

Cheese

Cooked Meats

Fresh Poultry

Cereal

Bread

Yoghurt

Instant Co¤ee

Eggs

0.155(2) 0.236(2) 0.277(3) 0.043(1)

0.463(2) 0.394(3) 0.343(2) 0.117(2)

0.491(1) 0.069(1) 0.302(1) 0.095(1)

0.083(2) 0.285(1) 0.436(2) 0.086(2)

stationary

0.268(2) 0.313(1) 0.150(2) 0.107(1)

stationary

0.097(2) 0.090(1) 0.043(1) 0.381(3)

0.686(1) 0.238(1) 0.356(1) 0.118(1)

stationary

0.537(3) 0.179(1) 0.045(1) 0.023(1)

-

-

-

-
0.015

-

0.765

-

-

0.233

-

pass

pass

pass

pass

fail

pass

pass

pass

pass

pass

pass

Sainsbury
Milk

Vegetables

Fruits

Cheese

Cooked Meats

Fresh Poultry

Cereal

Bread

Yoghurt

Instant Co¤ee

Eggs

0.622(3) 0.108(2) 0.523(3) 0.293(3)

0.491(2) 0.610(2) 0.032(2) 0.142(2)

stationary

stationary

stationary

0.555(2) 0.612(2) 0.921(3) 0.139(2)

stationary

0.598(1) 0.153(1) 0.393(1) 0.118(1)

0.213(3) 0.301(2) 0.211(4) 0.176(4)

stationary

0.094(2) 0.353(2) 0.954(3) 0.081(3)

-

-

0.263

0.078

0.003

-

0.089

-

-

0.003

-

pass

pass

pass

pass

fail

pass

pass

pass

pass

fail

pass

Tesco
Milk

Vegetables

Fruits

Cheese

Cooked Meats

Fresh Poultry

Cereal

Bread

Yoghurt

Instant co¤ee

Eggs

0.684(2) 0.172(2) 0.796(3) 0.351(2)

0.809(2) 0.895(2) 0.102(2) 0.350(2)

0.446(2) 0.210(2) 0.673(3) 0.548(2)

0.749(3) 0.599(2) 0.403(1) 0.465(2)

0.525(4) 0.518(3) 0.172(4) 0.596(5)

0.558(2) 0.397(2) 0.203(2) 0.216(3)

0.079(2) 0.194(2) 0.065(2) 0.105(2)

stationary

0.163(2) 0.453(2) 0.129(2) 0.199(2)

0.290(3) 0.017(4) 0.369(3) 0.213(3)

0.441(2) 0.777(2) 0.861(3) 0.388(2)

-

-

-

-
-

-

-

0.166

-

-

-

pass

pass

pass

pass

pass

pass

pass

pass

pass

pass

pass
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